• Title/Summary/Keyword: ion thruster

Search Result 21, Processing Time 0.023 seconds

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF

Experimental Investigation on Conceptual Design of Dual Stage Micro Plasma Thruster (이단 마이크로 플라즈마 추력기의 개념 설계에 대한 실험적 연구)

  • Trang, Ho Thi Thanh;Shin, Ji-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.540-543
    • /
    • 2011
  • This work is devoted to an experimental investigation on conceptual design of dual consecutive stage micro plasma thruster (${\mu}PT$). Optimization study on the thruster configuration has been performed for various electrode gap distances from 1 mm to 2 mm and the hole diameter from 0.3 mm to 2 mm depending on desired operating conditions and corresponding nozzle design requirement. The operation of ${\mu}PT$ at low pressure from $10^{-1}$ Torr to $10^{-4}$ Torr and at various argon flow rates ranging from 5 sccm to 300 sccm has been studied to understand the physic of plasma and the gas dynamics in details. The specific impulse can reach up to 3000-4000 seconds at low power consumptions from 1 to 5 W. Image of exhaust plume from ${\mu}PT$ will be provided and electrical characteristics is also mentioned in this paper.

  • PDF

Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas (전기추력기 연구개발 현황과 동향, Part I: 해외)

  • Kim, Holak;Kim, Su-Kyum;Won, Su-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.95-108
    • /
    • 2019
  • Electric propulsion is a type of space propulsion with a high specific impulse by accelerating propellant using electrical energy and brings about reduction of the fuel mass and launch costs of satellites so that it is being extensively studied in the world. Electric thrusters are widely used for various purposes from micro satellites to large satellites and from low Earth orbit satellites to spacecraft for exploration. Recently, satellites using full-electric propulsion have been developed, and the number of satellites with electric propulsion is also gradually increasing. In this paper, the current status and trends of research on electric propulsion in the United States, Europe, and Japan will be reported.

Development of Electrospray Micro Thruster with Super-Hydrophobic PTFE Surface Nozzle Treated by Ar and Oxygen Ion Beam

  • Lee, Y.J.;Byun, D.Y.;Si, Bui Quang Tran;Kim, S.H.;Park, B.H.;Yu, M.J.;Kim, M.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.877-880
    • /
    • 2008
  • In this article, in order to fabricate polymer based electrospray device with super hydrophobic nozzle we use PTFE(polyfluorotetraethylene) plate and PMMA(polymethylmethacrylate). To obtain the super hydrophobic surface nozzle, PTFE surface is treated by argon and oxygen plasma treatment process. And evaluate the treated surface, perform measuring contact angle, SEM(Scanning Electron Microscope) and AFM(Atomic Force Microscope). We compare the performance of the super hydrophobic PTFE surface nozzle with raw PTFE and PMMA surface nozzle. For the ion beam treated PTFE nozzle, the liquid doesn't overflow and it keeps initial position and meniscus shape. From these results, we expect in cease of superhydrophobic surface nozzle jetting becomes more stable and repeatable.

  • PDF

Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method (Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석)

  • Han, Doo-Hee;Joe, Min-Kyung;Shin, Junsu;Sung, Hong-Gye;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.932-938
    • /
    • 2017
  • Particle-in-cell method which blends Eulerian grids and Lagrangian particle is utilized to solve simplified hall-effect thruster. Since this study individually tracks not only neutrons and ions but also electrons, message passing interface(mpi) scheme is adopted for parallel computer cluster. Helical movement of an electron cloud in constant magnetic field is validated comparing with an exact solution. A plasma in radial magnetic field and axial electric field in a reaction cylinder is established. Electrons do double helix movement and are well anchored in a cylinder. Ionization of neutrons by impact with high-speed electrons generates ion particles. They are accelerated by axial electric field, which forms a plume of a plasma-effect thruster.

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Properties of ZnO thin film grown on $Al_2O_3$ substrate pretremented by nitrogen ion beam (이온빔으로 질화처리된 사파이어기판위에 성장한 ZnO박막의 특성)

  • Park, Byung-Jun;Jung, Yeon-Sik;Park, Jong-Young;Choi, Du-Jin;Choi, Won-Kook;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.413-416
    • /
    • 2004
  • In this study, zinc oxide(ZnO) having large misfit(18.2%) with sapphire was tried to be grown on very thin nitride buffer layers. For the creation of various kinds of nitride buffer layer, sapphire surface was modified by an irradiation of nitrogen ion beam with low energy generated from stationary plasma thruster(SPT) at room temperature. After the irradiation of ion beam, Al-N and Al-O-N bonding was identified to be formed as nitride buffet layers. Surface morphology was measured by AFM and then ZnO growth was followed by pulsed laser deposition(PLD). Their properties are analyzed by XRD, AFM, TEM, and PL. We observed that surface morphology was improved and deep level emission related to defects was almost vanished in PL spectra from the ZnO grown on nitride buffer layer.

  • PDF

Fabrication of Colloid Thrusters using MEMS Technology

  • Park, Kun Joong;Song, Seung Jin;Sanchez, Manuel Martinez
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.588-592
    • /
    • 2004
  • This paper presents the preliminary fabrication results of colloid thrusters which can provide thrust of the order of micro to milli-Newtons. MEMS technology has been used for fabrication, and four essential fabrication techniques - deep etching with nested masks, isotropic plasma etching, anisotropic reactive ion etching, and direct fusion wafer bonding - have been newly developed. Among diverse models which have been designed and fabricated, the fabrication results of 4-inch wafer-based colloid thrusters are presented.

  • PDF