• Title/Summary/Keyword: ion solvation

Search Result 34, Processing Time 0.017 seconds

A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein

  • Behbehani, G. Rezaei;Saboury, A.A.;Baghery, A. Fallah
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.736-740
    • /
    • 2008
  • The interaction of myelin basic protein (MBP) from bovine central nervous system with divalent calcium ion was studied by isothermal titration calorimetry at 27 ${^{\circ}C}$ in aqueous solution. The extended solvation model was used to reproduce the enthalpies of $Co^{2+}$-MBP interaction over the whole $Co^{2+}$ concentrations. The solvation parameters recovered from the solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of three identical and noninteracting binding sites for $Co^{2+}$ ions. The association equilibrium constant is 0.015 ${\mu}M^{-1}$. The molar enthalpy of binding is $\Delta$H = −14.60 kJ $mol^{-1}$.

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

Selective Solvation and Reasonable Solvation Number of Some Univalent Ions in Water-Ethanol Systems (물-에탄올 混合溶媒에서 몇가지 1가 이온들의 選擇的 溶媒和와 妥當한 溶媒和數)

  • Kim, Hag-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.589-597
    • /
    • 1995
  • In water-ethanol systems, the limiting equivalent conductances of electrolytes were obtained using conductometric method. Using TATB method, the limiting equivalent ionic conductances of Li+, Na+, K+, Cl-, and Br- ions were also obtained. The effective radii of corresponding ions were determined using Nightingale method. From the volume of the solvation shell, the four solvation numbers were suggested. The reasonable solvation numbers (hH2O+hO) were estimated by comparing the values obtained by from the various suggested methods. The isosolvation point of ion in water-ethanol estimated was found to be larger than that of in water-methanol. This result agree with ET (solvent polarity) values of solvents. From the reasonable solvation numbers of ions in water-ethanol, the selective solvents of corresponding ions in water-ethanol were obtained.

  • PDF

Solvation Number and Selective Solvation of Ions in Water-Methanol Systems (물-메탄올 混合溶媒中에서 이온들의 溶媒和數와 選擇的 溶媒和)

  • Jong-Jae Chung;Hag-Sung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 1993
  • The limiting equivalent ionic conductances of Li$^+$, Na$^+$, K$^+$, Cl$^-$, and Br$^-$ ions were obtained with TATB[Tetraphenyl Arsonium Tetraphenyl Borate] method from limiting equivalent conductances of LiCl, NaCl, KCl and KBr measured in water-methanol systems by conductometric method. With those values and viscosity of water-methanol systems, the Stokes radii of corresponding ions have been extracted. The latter values corrected by calibration method of Nightingale and supplemented by the crystallographic radii were utilized to calculate the volume of solvation-shell that surrounds ions. The reasonable solvation numbers (h$_{H_2O}$ + h$_0$) were estimated by comparing the values obtained by the various suggested methods. The selective properties of ion solvation were also discussed.

  • PDF

Solvent Effect on $Rb^+$ to $K^+$ Iron Mutation: Monte Carlo Simulation Study

  • Kim, Hak Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.503-509
    • /
    • 2000
  • The solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for $Rb^+$ to $K^+$ mutation in several solvents have been investigated using Monte Carlo simulation (MCS) of statistical perturbation theory(SPT). In comparing the relative free energies for interconversion of one ion pair, $Rb^+$ to $K^+$, in $H_2O$(TIP4P) in this study with the relative free energies of the computer simulations and the experimental, we found that the figure in this study with the relative free energies of the computert simulations and the experimental, we found that the figure in this study is $-5.00\pm0.11$ kcal/mol and those of the computer simulations are $-5.40\pm1.9$, -5.5, and -5.4 kcal/mol. The experimental is -5.1 kcal/mol. There is good agreement among various studies, taking into account both methods used to obtain the hydration free energies and standard deviations. There is also good agreement between the calculated structural properties of this study and the simulations, ab initio and the experimental results. We have explained the deviation of the relationship between the free energy difference and the Onsager dielectric function of solvents by the electron pair donor properties of the solvents. For the $Rb^+$ and $K^+$ ion pair, the Onsager dielectric function of solvents (or solvent permittivity), donor number of solvent and the differences in solvation dominate the differences in the relative free energies of solvation and partition coefficients.

Halogen Exchange Reactions of Benzyl Halides Part Ⅲ-Kinetics of Reactions of Bromide and Iodide Ions with Benzyl Chloride and Bromide in Absolute Acetone (벤질 할라이드의 할로겐 교환반응 (제Ⅲ보) 아세톤 중에서의 염화 및 브롬화 벤질과 브롬화 및 요오드화 이온간의 교환반응)

  • Hangbo Myung-Hwan;Lee Bon-su;Lee Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 1969
  • Halogen exchange reactions of benzyl halides have been studied in absolute acetone. Rate constants were calculated using an integrated rate expression derived for the reaction involving ion-pair association. The order of nucleophilicity of halide ions in acetone was found to be a reverse of the order in 90% aqueous enthanol solvent. This was interpreted by means of HSAB principle and solvation of halide ions. Net increase in rate of reaction in acetone compared with the rate in protic solvent resulted from large increase in ${\Delta}S^\neq$ rather than decrease in ${\Delta}H^\neq$. The solvation of the transition state also contribute to the net increase in rate.

  • PDF

Electrostatic Gibbs Free Energy and Solvation Number of Tetraalkylammonium Ions in Pyridine at 25${^{\circ}C}$ Obtained Using Conductance of Corresponding Ion

  • 김학성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1347-1350
    • /
    • 1998
  • The equivalent conductances for tetraethylammonium perchlorate (TEAP), tetrabutylammonium perchlorate (TBAP), tetrahexylammonium perchlorate (THAP), and tetradodecylammonium perchlorate (TDDAP) were measured in pyridine (Py) at 25 ℃. The measured data have been analyzed by Onsager conductance theory. From Kohirausch's law of independent migration of ion, the limiting ionic conductances of tetraalkylammonium ions were determined using the limiting ionic conductance of perchlorate cited from reference. Using those and viscosity of pyridine, the Stokes and hydrodynamic radii of tetraethylammonium, tetrabutylammonium, tetrahexylammonium, and tetradodechylammonium ions were calculated. And, the salvation numbers of corresponding ions were also calculated using the hydrodynamic and crystallographic radii and the volume of one pyridine molecule. From those results, the model of salvation for those ions was extracted by comparison with the model for ion salvation. And the electrostatic Gibbs free energy (ΔGel) fitted for our salvation model was calculated. Those of corresponding ions in pyridine at 25 ℃ also increased with increasing radii of tetraalkylammonium ions. This trend of ΔGel was explained by the different ion-solvent interaction between tetraalkylammonium ion and pyridine.

Stoichiometric Solvation Effects. Solvolysis of Methanesulfonyl Chloride

  • Gu, In Seon;Yang, Gi Yeol;An, Seon Gyeong;Lee, Jong Gwang;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.955-956
    • /
    • 2000
  • Solvolyses of methanesulfonyl chloride in water, $D^2O$, $CH^3OD$, and in aqueous binary mixtures of acetone, eth-anol and methanol are investigated at 25, 35 and $45^{\circ}C.$ The Grunwald-Winstein plot of first-order rate con-stants for the solvolytic react ion of methanesulfonyl chloride with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small m value (m < 0.30), and shows a rate maximum for aqueous alcoholic solvents. Stoichiometric third-order rate constants, kww and kaa were calculated from the observed first-order rate constants and (kaw + kwa) was calculated from the kww and kaa values. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or SAN/SN2 reaction mechanism for methanesulfonyl chloride solvolyses based on mass law and stoichiometric solvation effect studies.

Influence of Alkyl Chain Length on Fragmentations and Ion-Molecule Reactions of Ionized c-C6H11-(CH2)nCO2H

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1711-1716
    • /
    • 2005
  • Fragmentations and ion-molecule reactions of ionized cyclohexane propionic acid and cyclohexane butyric acid were studied using FTMS and theoretical calculations. The difference in bond dissociation depending on the aliphatic chain length was investigated and mechanisms for the possible rearrangements depending on the aliphatic carbon length were suggested. The most abundant fragment ion of the ionized cyclohexane propionic acid was c-$C_6H_{11}CH_2\;^+$ formed from the molecular ion by the direct C-C bond cleavage, while that of the ionized cyclohexane butyric acid was c-$C_6H_9C(OH)=OH^+$ formed by rearrangement of the molecular ion from the acid to diol form and loss of propyl radical. Stabilities of the radical and distonic ions of $C_nH_{2n}O^{+\bullet}$ formed from the molecular ion were compared. Protonated molecules were dissociated into smaller ions by losing one or two water molecules. The $[nM + H]^+$, $[nM + H - H_2O]^+$, and $[nM + H - 2H_2O]^+$ with n = 2 and 3 were generated by solvation with the neutral molecules in the ICR cell at long ion trapping time.

Li+ and Li+I-Li+ ions Solvated by 1,4-dioxane: An ion Mobility Spectrometry-Mass Spectrometry Study

  • Choi, Yunseop;Ji, Inyong;Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.152-158
    • /
    • 2021
  • Electrospray ionization (ESI) and ion mobility spectrometry-mass spectrometry (IMS-MS) were employed to investigate the solvated structures of ionic species in the lithium iodide electrolyte solution in the gas phase. The Li+I-Li+ triple ion and single standalone Li+ ions solvated by 1,4-dioxane were successfully generated and observed by ESI-MS under the influence of dioxane vapor at the inlet region. Under the present experimental condition, (1,4-dioxane)m·Li+ complex ions (m = 1, 2, and 3) and a (1,4-dioxane)·Li+I-Li+ complex ion were observed, which were further examined by IMS to investigate their structures. The presence of multiple structural isomers was confirmed, which accounts for the endothermic conformational transition of 1,4-dioxane from a chair to a boat to achieve bidentate O-donor binding to Li+ and Li+I-Li+. Further structural details critical for the ion-solvent interactions were also examined and discussed with the help of density functional theory calculations.