• Title/Summary/Keyword: ion loss

Search Result 385, Processing Time 0.024 seconds

Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives (인-질소 첨가제로 처리된 시험편의 연소 시에 발생하는 일산화탄소와 이산화탄소 생성)

  • Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.609-614
    • /
    • 2015
  • This study was to investigate the production of combustion toxic gases of pinus rigida specimens treated with pyrophosphoric acid (PP)/4ammonuium ion ($4NH_4{^+}$), methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP) and PIPEABP/$4NH_4{^+}$. Each pinus rigida plates was painted in three times with 15 wt% in the aqueous solution followed by drying the species at room temperature. Emission of combustion toxic gases was examined by the cone calorimeter (ISO 5660-1). First-time to peak mass loss rate (1st-$TMLR_{peak}$) treated with chemicals was delayed upto 66.7~250.0% compared to those of untreated specimens. For test pieces treated with the chemicals, the emission of peak carbon monoxide ($CO_{peak}$) values of 0.0136~0.0178% and peak carbon dioxide ($CO_{2\;peak}$) value of 0.04432~0.3648% were obtained, which were higher than those for the virgin plate. In particular, oxygen emission is much higher than the level of 15% which can be fatal to humans. Therefore, the resulting risk could be eliminated. However it is supposed that the combustion-toxicities were partially increased compared to those of virgin plate.

Finite Element Analysis of RF Coupler in Normal-Low Temperature (상온-저온 RF 커플러 유한요소해석)

  • Kim, Hansol;Lee, Hak Yong;Park, Chan;Lee, Jaeyeol;Lim, Dong Yeal;Yoo, Jeonghoon;Hyun, Myung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1101-1107
    • /
    • 2014
  • A heavy ion accelerator is a device that accelerates heavy ions in the radio frequency (RF) range. The electric field that flows into the RF cavity continuously accelerates heavy ions in accordance with the phase of the input electromagnetic wave. For the purpose, it is necessary to design a coupler shape that can stably transfer the RF wave into the cavity. The RF coupler in a heavy ion accelerator has a large temperature difference between the input port and output port, which radiates the RF waves. It is necessary to consider the heat deflection on the RF coupler that occurs as a result of the rapid temperature gradient from an ultra-low temperature about 0 K to a room temperature about 300 K. The purpose of this study was to improve the system performance through an analysis of the intensity of the output electric field and temperature distribution considering various shapes of the RF coupler, along with an analysis of the durability considering the heat deflection and heat loss.

Effects of Postharvest Heat Treatment on Alleviation Chilling Injury and Improvement Storability of Oriental Melon (수확 후 고온처리가 참외의 저온장해 완화와 저장성 향상에 미치는 영향)

  • Kang Ho-Min;Park Kuen-Woo;Kim Il Sop
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Oriental melons hold at $38^{\circ}C$ for 48 hours before storage increased their soluble solid, titratable acidity, vitamin C contents and ${\alpha}$-tocopherol activity. These heat treated oriental melons maintained lower production of carbon dioxide, ethylene and acetaldehyde and loss of fresh weight than untreated them, called control, during $3^{\circ}C$ MA storage. After 39 days in storage, the last day of storage, visual quality and internal quality, such as firmness, soluble solid, titratable acidity, vitamin C and ${\alpha}$-tocopherol activity, showed higher in heat treated oriental melons. Especially, Ion leakage of flesh, index of chilling injury, increased remarkably in control, so that heat treatment had to alleviate chilling injury in oriental melon. Moreover, while Alternaria rot was shown in control plot after 25 days in $3^{\circ}C$ MA storage, oriental melons treated heat were not appeared any decomposition after 39 days in $3^{\circ}C$ MA storage. As storage life of oriental melon was calculated by regression equation between visual quality and days in storage, that was longer 8 days in heat treated than control. Consequently, heat treatment that was mild, $38^{\circ}C$ and long period, 48 hours, executed before storage, sterilized surface alleviated chilling injury and lengthened storage life in oriental melons.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Improvement of Structure and Electrochemical Properties of LiNi0.5Mn1.5O4 for High Voltage Class Cathode Material by Cr Substitution (Cr 치환을 이용한 고전압용 양극 활물질 LiNi0.5Mn1.5O4의 구조와 전기화학적 성능의 개선)

  • Eom, Won-Sob;Kim, Yool-Koo;Cho, Won-Il;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.82-87
    • /
    • 2005
  • The cathode material, $LiNi_{0.5}Mn_{1.5}O_4$, for high voltage applications of Li-ion batteries exhibits impurity phases due to oxygen deficiency during the high temperature heat treatment. The impurity phase reduces the electrochemical properties of the electrode since the deficiency spinel structure disturbs the lithium ion intercalation and deintercalation. In this study, Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4(0{\leq}x{\leq}0.05)$ powders are synthesized by a sol-gel method in order to reduce the amount of the impurity phases in the $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4$. Thermal analysis of the cathode material shows that the $LiNi_{0.5}Mn_{1.5}O_4$ without Cr substitution looses $2\%$ of its weight due to oxygen deficiency but the amount of weight loss is diminished when Cr is substituted. XRD analysis also supports the reduction of the impurity phases in the cathode after chromium substitution, suggesting that the improvement of the electrochemical properties such as the capacity retention and electrochemical stability are attributed to the low content of impurity phases in the Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4.$

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Determination of fluorine in Krill oils by combustion-ion chromatography (연소-이온크로마토그래프를 이용한 크릴오일 중 불소 시험법)

  • Jung, Jaehak;Kim, Soobin;Chu, Euisung;Joung, Joungmoo
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.262-273
    • /
    • 2020
  • A fluorine content analysis method for krill oils, which is a representative oil formulation in foods, was developed in compliance with the Korea Food and Drug Ministry's "Guidelines for Validation of Testing Methods Related to Food". Using this method for krill oils, the presence of impurities was evaluated via combustion-ion chromatography (C-IC). A review of published technical data on fluorine in krill oils showed that while the traditional wet potentiometric method was typically used, it was not reliable. Moreover, there was no food testing/analysis laboratory in Korea to perform a fluorine test analysis on such an oil matrix. Therefore, we identified halogen (fluorine) tests, developed to national and international standards, and developed a test method suitable for krill oils by selecting a C-IC method that is sufficiently applicable to the oil matrix. Based on the characteristics of the oil matrix, the optimal test method was established through various experiments by reviewing the concerns related to loss and interference in the preparation and introduction of samples. The fluorine content test was carried out on 11 krill oil products that were purchased online. Most products (with the exception of only one) were found to contain less than the reporting limit obtained by the test method. Furthermore, after additional testing, a high fluorine content of approximately 2,000 ~ 3,000 mg/kg was detected on the krill surface, although the concentration varied depending on the area of the krill. A comparison with samples from two ISO/IEC 17025 testing laboratories confirmed that there was no significant difference in the statistical analysis results obtained by ANOVA among the three laboratories. A testing guide for fluorine content analysis was completed.

Effect of Nutrient Solution Concentration in the Second Half of Growing Period on the Growth and Postharvest Quality of Leaf Lettuce (Lactuca sativa L.) in a Deep Flow Technique System (담액수경재배 시 재배후기 양액농도가 상추의 생장 및 수확후 품질에 미치는 영향)

  • Lee, Jung-Soo;Chang, Min-Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.456-464
    • /
    • 2017
  • We examined the effect of nutrient solution concentration in the second half of growing period on the pre- and postharvest characteristics of two leaf lettuce cultivars, 'Geokchima' and 'Cheongchima'. Plants were grown hydroponically in a deep flow technique (DFT) system at different concentrations of National Horticulture Research Institute hydroponic nutrient solution: 1/2 strength (S), 1S, 2S, and 4S. Lettuce leaf growth, number of leaves, and shoot fresh weight of both cultivars were greatest in plants grown in the 1S treatment. Compared to other treatments, pigment and nutrient ion contents were greater in the 4S treatment. Growth of lettuce was greatest in the 1S treatment, and decreased at higher or lower concentrations of nutrient solution. However, postharvest characteristics such as fresh weight loss, leaf chlorophyll level, and external appearance were better in both cultivars when grown in 2S solution. Variations in weight loss and SPAD values were smallest in the 2S treatment. These results show that the optimal nutrient concentration for growth does not necessarily provide the optimal postharvest storability.

Corona Discharge Characteristics and Particle Losses in a Unipolar Corona-needle Charger Obtained through Numerical and Experimental Studies

  • Intra, Panich;Yawootti, Artit;Rattanadecho, Phadungsak
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2021-2030
    • /
    • 2017
  • In this paper, the unipolar corona-needle charger was developed and its capabilities were both numerically and experimentally investigated. The experimental corona discharges and particle losses in the charger were obtained at different corona voltage, aerosol flow rate and particle diameter for positive and negative coronas. Inside the charger, the electric field and charge distribution and the transport behavior of the charged particle were predicted by a numerical simulation. The experimental results yielded the highest ion number concentrations of about $1.087{\times}10^{15}ions/m^3$ for a positive corona voltage of about 3.2 kV, and $1.247{\times}10^{16}ions/m^3$ for a negative corona voltage of about 2.9 kV, and the highest $N_it$ product for positive and negative coronas was found to about $7.53{\times}10^{13}$ and $8.65{\times}10^{14}ions/m^3$ s was occurred at the positive and negative corona voltages of about 3.2 and 2.9 kV, respectively, and the flow rate of 0.3 L/min. The highest diffusion loss was found to occur at particles with diameter of 30 nm to be about 62.50 and 19.33 % for the aerosol flow rate of 0.3 and 1.5 L/min, respectively, and the highest electrostatic loss was found to occur at particles with diameters of 75 and 50 nm to be about 86.29 and 72.92 % for positive and negative corona voltages of about 2.9 and 2.5 kV, respectively. The numerical results for the electric field distribution and the charged particles migration inside the charger were used to guide the description of the electric field and the behavior of charged particle trajectories to improve the design and refinement of a unipolar corona-needle charger that otherwise could not be seen from the experimental data.

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF