• Title/Summary/Keyword: ion exchange capacity

Search Result 389, Processing Time 0.023 seconds

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.

Structure and Properties of Cation Exchange Membrane made of Sulfonated Polyethersulfone

  • Nah, Sung-Soon;Lee, Sung-Min;Ryul, Min-Byung;Lee, Chang-So
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • In this work a new process was developed for the sulfonation of the chemicallly stable engineering polymer polyethersulfone as membrane materials for electrodialysis or a flow battery applications. Commercially available polyethersulfone polymer was partially sulfonated using a CSA sulfonating agent in a dichloromethane solvent, which sulfonated polyethersulfone with various sulfonation levels have been prepared. Sulfonated polyethersulfone (SPES) membranes with different ion capacities were prepared for the purpose of identifying cation exchange membrane properties, in an attempt to find a low cost replacement for Nafion, which most of the perfluorinated membranes, known to exhibit a prolonged service life, are expensive and difficult to process. The following features were determined: the degree of sulfonation, water uptake, thermal analysis, and electrochemical properties such as ion exchange capacities, resistivity, selectivity of ion permeation. The surface of the cation exchange membranes, decomposed with the H202-treatment, were observed by using scanning electron microscope. The area resistivities of SPES mebranes in 5N-NaOH decreased from $2,150{\;}{\Omega}-cm2$ to less than $15{\Omega}-cm2$ as the ion exchange capacity (IEC) increased from 0.62 to 1.73 millieequivlants per dry gram(meq/dg).eq/dg).

  • PDF

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

Comparison of Properties of Two Kinds of Anion Exchange Membranes with Different Functional Group for Alkaline Fuel Cells (알칼라인 연료전지용 다른 작용기들을 갖는 두 종류의 음이온 교환 막들의 특성 비교)

  • LEE, SEUNGYEON;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2018
  • This study reports the fabrication of anion exchange membranes (AEMs) containing two kinds of functional groups: i) trimethylphosphite (TMP) and ii) trimethylamine (TMA). We carried out the synthesis of polymers to enhance thermal stability and ion conductivity. The alternative polymer was prepared using 2,2-bis(4-hydroxy-3-methylphenyl)propane and decafluorobiphenyl. The membrane was fabricated by solution casting method. The thermal stability of membranes was examined by TGA. The physiochemical properties of membranes were also investigated in terms of water uptake, swelling ratio, ion exchange capacity, and ion conductivity. The hydroxide ion conductivity of the membranes reached about 20.2 mS/cm for quaternary ammonium poly(arylene ether) (QA-PAE) containing TMA moiety and 5.1 mS/cm for quaternary phosphonium PAE (QP-PAE) containing TMP moiety at $90^{\circ}C$.

Study on Anion Exchange Membrane for the Alkaline Electrolysis (알칼리 수전해용 음이온교환막에 관한 연구)

  • Choi, Ho-Sang;Rhyu, Chul-Hwe;Lee, Sung-Un;Byun, Chang-Sub;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.184-190
    • /
    • 2011
  • The membrane properties (membrane resistance and ion exchange capacity) of the five types of commercial anion exchange membrane, i.e. IOMAC, AHT, APS, AHA, AFN, were evaluated for the application in the alkaline electrolysis. The membrane resistance decreased in the order; in 1M KOH: AHT>IOMAC>AHA>AFN>APS; in 1M NaOH: AHT>IOMAC>AHA>APS>AFN. The ion exchange capacity decreased in the order: AFN>APS>AHT>AHA>IOMAC. The membrane life was determined from the change of membrane resistance in 1M KOH and NaOH with an increase of soaking time in 20 wt% KOH and 30 wt% NaOH solution. AHA membrane had a good membrane life in 20 wt% NaOH with its unchanged membrane resistance. And, AFN and AHA membrane had a good membrane life in 30 wt% NaOH with its unchanged membrane resistance.

A Study on the Characteristics and Preparation of the Cation Exchange Membrane Using Various Type of Polystyrene (폴리스티렌을 이용한 전기투석용 양이온교환 막의 제조 및 그 특성에 관한 연구)

  • Kim, Hi Youl;Kim, Jong Hwa;Park, Keun Ho;Song, Ju Yeong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.340-344
    • /
    • 2006
  • We prepared porous cation exchange membrane using polystyrene such as, EPS (expanded polystyrene), SAN (styrene acrylonitrile copolymer) and HIPS (high impact polystyrene). These three kind of polystyrene were sulfonated by acetyl sulfate to make sulfonated porous cation exchange membrane such as, SEPS (sulfonated expanded polystyrene), SSAN (sulfonated styrene acrylonitrile copolymer)and SHIPS (sulfonated high impact polystyrene). SEM was employed to validate porous structure of membrane, and IR spectroscopy was used to validate sulfonation rate of ion exchange membrane. As a results, ion exchange capacity was increased with an amount of sulfuric acid in reactants and cation exchange membrane showed the selectivity to a cation and showed the exclusivity to an anion.

Capacity of Oil Cake Ion Exchanger (깻묵 이온교환체의 이온교환능)

  • Dong Won Kim;Hae Young Song;Hwang, Myeong Cheon;Hae Il Ryu
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.300-305
    • /
    • 1981
  • The soy bean oil cakes and perillar oil cakes are phosphorylated and sulfonated to be used as ion exchangers. There 40-60mesh cations exchanges have bean tested on the capacity of ion exchange, the adsorption and distribution coefficients of several metal ions in various concentrations of binary solution mixture, hydrochloric acid and alcohol. From there experiments, the following results are concluded. The ion exchange capacity of ion exchangers are higher than 4 meq/g. The adsorption of metal ions on ion exchangers are increased generally as pH is increased, especially Co(II) on sulfonated soy bean oil cake. The distribution coefficients of various metal ions are decreased as the number of branches of carbon and hydroxyl groups are increased. There show that the stereo-isomerism of alkyl group or attraction of ligand have influenced upon various metal ions. Consequently it is deduced that there ion exchanges from soy bean oil cake and perillar oil cake resemble in properties to current ion exchangers.

  • PDF

Intercalation of Ca-montmorillonite with Decylammonium Ion and n-Alcanol (Decylammonium 이온과 n-Alcanol 분자에 의한 Ca-montmorillonite의 Intercalation)

  • 최진호;김창은;형경우
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.205-210
    • /
    • 1983
  • The determination of charge density and charge distribution in montmorillonite are discussed. The method is based on cation exchange of the inorganic interlayer cations against decylammonium ion and molecular intercalation of n-alcanol. The results obtained from Yougil-bentonite show that charge density of 0.37 per unit formula and cation exchange capacity of 102.5 meq/100g.

  • PDF

The Calcium and Magnesium Ion-Exchange Properties of Snythetic δ-Na2Si2O5 from Water Glass (Water Glass로부터 합성한 δ-Na2Si2O5의 Ca2+, Mg2+ 이온교환성)

  • Jeong, Soon-Yong;Suh, Jeong-Kwon;Park, Jeong-Hwan;Doh, Myung-Ki;Koh, Jae-Cheon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.406-412
    • /
    • 1994
  • The ion-exchange properties of $Ca^{2+}$ and $Mg^{2+}$ ions have been studied in ${\delta}-Na_2Si_2O_5$ synthesized from water glass. Results show that optimum temperature for synthesis of ${\delta}-Na_2Si_2O_5$ was $725^{\circ}C$. Ion-exchange isotherms for $Ca^{2+}$ and $Mg^{2+}$ exchange for $Na^+$ in the synthetic ${\delta}-Na_2Si_2O_5$ show that the ion-exchange capacity of magnesium is better than that of calcium, and the ion-exchange of magnesium is less sensitive for temperature than that of calcium. When initial pH of solution is increased between 2 and 6, the ion-exchange capacities of magnesium and calcium decrease a little. However, they are almost constant above pH 6 because of alkali buffer effect of ${\delta}-Na_2Si_2O_5$. In the thermodynamic studies, it was found that Gibbs free energies of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange with inverse order of selectivity. The standard enthalpy and entropy of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange.

  • PDF