• Title/Summary/Keyword: ion detection

Search Result 665, Processing Time 0.02 seconds

Ammonium Ion Binding Property of Naphtho-Crown Ethers Containing Thiazole as Sub-Cyclic Unit

  • Kim, Hong-Seok;Do, Kyung-Soon;Kim, Ki-Soo;Shim, Jun-Ho;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1465-1470
    • /
    • 2004
  • A short and efficient synthesis, solvent extraction and potentiometric measurements of new thiazole-containing naphtho-crown ethers are reported. The naphthalene moiety enhances the ammonium ion selectivity over potassium ion. The selectivity of ${NH_4}^+/K^+$ follows the trend $3\;{\approx}\;2\;>\;1$, indicating that the differences in conformational changes of 2 and 3 in forming ammonium complexes affect little on the resulting ammonium/potassium extraction selectivity ratio. The ammonium ion-selective electrodes were prepared with noctylphenyl ether plasticized poly(vinyl chloride) membranes containing 1-4 the effect of one naphthalene unit introduced on either right (2) or left (3) side of thiazolo-crown ether on their potentiometric properties (e.g., ammonium ion selectivity over other cations, response slopes, and detection limits) were not apparent. However, the ammonium ion selectivity of 1, 2 and 3 over other alkali metal and alkaline earth metal cations is 10-100 times higher than that of nonactin.

Study on the Residue Analysis of Organophosphorus and Organochlorine Pesticides with Ion Trap and Quadrupole Mass Spectrometer (Ion Trap Mass Spectrometer와 Quadrupole Mass Spectrometer를 이용한 유기인제 및 유기염소제 농약 분석에 관한 연구)

  • Rhee, Jae-Seong;Park, Hyun-Mee;Er, Yon-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.902-909
    • /
    • 1995
  • Detection limit as well as calibration curves on organophosphorus pesticide(dimethoate, diazinon, parathion-methyl, fenitrothion, malathion) and BHCs were measured for evaluation of utility on qualitative or quantitative analysis of pesticides with ion Trap mass spectrometer and quadrupole mass spectrometer. As ionization source, EI and CI were adopted for qualitative analysis of pesticides by comparison of each fragmentation pattern. At the same time, the utility as trace analysis techniques through scan or selected ion monitoring(SIM) mode was evaluated. With ion trap for all pesticides, detection limit(DL, 1 ${\mu}L$ injection) on scan mode was ranged 0.008∼0.225 ng at signal to noise ratio 3. With quadrupole DL on scan mode was ranged 0.23∼3.1 ng over 0.032∼0.68 ng on SIM mode. The calibration curve with ion trap generated good linearity over 0.99 as correlation coefficient. As clean up procedure, Bio Beads S-X3 was used for the separation of oils from five organophosphorous pesticides in flour extractant showing more than 80% as recovery at most cases. In case of BHCs in jinseng with Florisil column, the recovery of pesticides has been 60% to 90%.

  • PDF

Ion chromatographic determination of chlorite and chlorate in chlorinated food using a hydroxide eluent

  • Kim, Dasom;Jung, Sungjin;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • This study was conducted to develop an analytical technique for determination of chlorite and chlorate concentrations in fresh-cut food and dried fish products by an ion chromatography/conductivity detection method using a hydroxide mobile phase. Deionized water was added to homogenized samples, which were then extracted by ultrasound extraction and centrifuged at high speed (8,500 rpm). Subsequently, a Sep-Pak tC18 cartridge was used to purify the supernatant. Chlorite and chlorate ions were separated using 20 mM KOH solution as the mobile phase and Dionex IonPac AS27 column as the stationary phase. Ethylenediamine was used as sample preservative and dibromoacetate was added to adjust for the disparity in extraction efficiencies between the food samples. The method detection limit) for chlorite and chlorate were estimated to be 0.2 mg/kg and 0.1 mg/kg, respectively, and the coefficient of determination ($r^2$) that denotes the linearity of their calibration curves were correspondingly measured to be 0.9973 and 0.9987. The recovery rate for each ion was 92.1 % and 96.3 %, with relative standard deviations of 7.47 % and 6.18 %, respectively. Although neither chlorite nor chlorate was detected in the food samples, the analytical technique developed in this study may potentially be used in the analysis of disinfected food products.

A New Analytical Method for the $Dy^{3+}$ Ion Using the Luminescence Enhancement by the Treatment of o-Phenanthroline on the TLC Plate (TLC Plate에서의 발광증폭 및 o-Phenanthroline에 의한 Energy Transfer를 이용한 $Dy^{3+}$ 이온의 미량 분석법)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.386-393
    • /
    • 1998
  • A new analytical luminescence method for the $Dy^{3+}$ ion was studied using the luminescence enhancement by the treatment of the o-phenanthroline on the TLC plate. Compared to the specific emission intensities of the ion in water solution, if the ion solution is spotted on the TLC plate, the luminescence intensities were extremely enhanced. There was additional enhancement effect of the luminescence intensities of the ions on the TLC plate, if the ion on the TLC plate is treated with o-phenanthroline. Based on the luminescence enhancement, the detection limit was improved by more than 4 order of magnitude compared to that of solution sample. The dynamic ranges and correlation coefficients of the calibration curves near the detection limit were 102 order and ~0.99, respectively. The energy-transfer mechanism was explained for the theoretical back ground of the luminescence enhancement.

  • PDF

Determination of Iodide in Sulfuric Acid Aqueous Solution by the Ion Chromatography with UV Detection (이온 크로마토그래피와 자외선 검출을 이용한 황산수용액 중의 요오드 음이온 정량)

  • Park, Yang-Soon
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.306-310
    • /
    • 2001
  • Ion chromatography was applied to determine iodide remained in sulfuric acid aqueous solution after adsorption procedure. Iodide was determined in 0.25 M, 0.5 M and 1 M sulfuric acid solution on time variation. Because sulfuric acid in solution plays as an oxidizer, the concentration of iodide decreased with increasing concentration or sulfuric acid. Thereafter, sulfuric acid was neutralized with sodium hydroxide. Good linearity(r=0.99999) was obtained at the range of 0-20 mg/L 1 in 0.5 M sodium sulfate matrix.

  • PDF

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (I). Continuous-Automated Determination of Nitrite Ion Using Tubular PVC Membrane Type of pH Electrode (용해기체 분석용 기체 감응막 이온선택성 전극 (제 1 보). 관형 PVC 막 pH 전극을 이용한 아질산이온의 연속·자동화 정량)

  • Heung Lark Lee;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.388-398
    • /
    • 1989
  • A continuous-automated method for the determination of nitrite ion using gas-sensing membrane electrode was developed. The pH electrode of tubular PVC membrane type was used as a detector of this system. The slope of linear response of the electrode measured at optimum conditions for the continuous-automated determination of nitrite ion was 63.5 mV/decade. The concentration range of linear response and detection limit were 2.5 ${\times}10^{-4}{\sim}\;7.5{\times}10^{-2}$M and $8.0{\times}10^{-5}$M, respectively. This detection system was not only less interfering to acidic gas species than other methods but also less time consumable for determination.

  • PDF

Determination of Total Chlorine Residuals by Flow Injection Analysis (흐름 주입 분석법에 의한 총 잔류염소의 정량)

  • Choi, Yong Wook
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 1999
  • The determination of total chlorine residuals in drinking water by flow injection analysis(FIA) with iodometric UV detection was investigated. The pH of the acid stream, the concentration of the iodide ion,the length of the mixing and reaction coils, the injection sample size, and flowrate were optimized as parameters for determining total chlorine residuals by FIA method. lodide was selectively oxidized to iodine by hypochlorite at pH 8.3 Ethylenediamine as masking agent for masking interference ions from the sample was given the best efficency. Calibration curve presented linear range of 0.03-3 mg/L for hypochlorite ion with a correlation coefficient of 0.999 or better. The detection limit was found to be 0.007 mg/L for hypochlorite ion. Under these analytical conditions, total chlorine residuals in several tap water sampled in the city of Jeonju were analyzed.

  • PDF

Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

  • Lee, Kwang-Pill;Choi, Seong-Ho;Park, Yu-Chul;Bae, Zun-Ung;Lee, Mu-Sang;Lee, Sang-Hak;Chang, Hye-Yong;Kwon, Se-Mok;Kazuhiko Tanaka
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1324-1328
    • /
    • 2003
  • The simultaneous determination of anions ($SO_4 ^{2-},\;Cl^-,\;and\;NO_3^-$) and cations ($Na^+,\;NH^{4+},\;K^+,\;Mg^{2+},\;and\;Ca^{2+}$) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cationexchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the $H^+$-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

Simultaneous Determination of Tar Color Additives in Cold Syrups by Ion Pair-high Performance Liquid Chromatography (이온쌍-고성능 액체크로마토그래피에 의한 감기약 시럽에서 타르색소 첨가물의 동시분석)

  • Jin, Jing-Yu;Huang, Hu;Lee, Beom-Gyu;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A simple and efficient analytical method for the simultaneous determination of seven tar color additives was developed using ion pair high performance liquid chromatography. The conditions for HPLC analysis were as follows: column, ${\mu}$-Bondapak C18 (10 ${\mu}m$, 300 ${\times}$ 3.9 mm i.d.); gradient mobile phase, 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrile-methanol (65:25:10) as a mobile for fraction A and 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrilemethanol (40:50:10) as a mobile for fraction B; flow rate, 1.0 mL/ min; detection wavelength, 254/520/620 nm. We could attain to the detection limits as 0.01~0.05 ${\mu}$g/mL (254 nm) and 0.005~0.01 ${\mu}$g/mL (520 nm) for six red tar color additives, and 0.05 ${\mu}$g/mL (254 nm) and 0.002 ${\mu}$g/mL (620 nm) for Fast green FCF. This analytical method was applicable to determine the tar color additives contained in several commercial cold syrups.