• Title/Summary/Keyword: ion current density

Search Result 399, Processing Time 0.028 seconds

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors (아연-이온 하이브리드 슈퍼커패시터를 위한 보론 도핑된 활성탄의 제조)

  • Lee, Young-Geun;Jang, Haenam;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.458-464
    • /
    • 2020
  • Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.

Development and Testing of a Prototype Long Pulse Ion Source for the KSTAR Neutral Beam System

  • Chang Doo-Hee;Oh Byung-Hoon;Seo Chang-Seog
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.357-363
    • /
    • 2004
  • A prototype long pulse ion source was developed, and the beam extraction experiments of the ion source were carried out at the Neutral Beam Test Stand (NBTS) of the Korea Superconducting Tokamak Advanced Research (KSTAR). The ion source consists of a magnetic bucket plasma generator, with multi-pole cusp fields, and a set of tetrode accelerators with circular apertures. Design requirements for the ion source were a 120kV/65A deuterium beam and a 300 s pulse length. Arc discharges of the plasma generator were controlled by using the emission-limited mode, in turn controlled by the applied heating voltage of the cathode filaments. Stable and efficient arc plasmas with a maximum arc power of 100 kW were produced using the constant power mode operation of an arc power supply. A maximum ion density of $8.3{\times}10^{11}\;cm^{-3}$ was obtained by using electrostatic probes, and an optimum arc efficiency of 0.46 A/kW was estimated. The accelerating and decelerating voltages were applied repeatedly, using the re-triggering mode operation of the high voltage switches during a beam pulse, when beam disruptions occurred. The decelerating voltage was always applied prior to the accelerating voltage, to suppress effectively the back-streaming electrons produced at the time of an initial beam formation, by the pre-programmed fast-switch control system. A maximum beam power of 0.9 MW (i.e. $70\;kV{\times}12.5\;A$) with hydrogen was measured for a pulse duration of 0.8 s. Optimum beam perveance, deduced from the ratio of the gradient grid current to the total beam current, was $0.7\;{\mu}perv$. Stable beams for a long pulse duration of $5{\sim}10\;s$ were tested at low accelerating voltages.

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

Polymer PN Junction by low Energy Double Implantation Technique

  • Jeong, Yong-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.721-724
    • /
    • 2011
  • Polymer base organic PN junction with various ion types was studied. Low-energy ion implantation technique(~keV) is very useful in physical doping on PPP(Polyparaphenylene) polymer. By double implantation, effective organic PN junction was achieved. The best obtained electrical I-V property was rectification ratio which was about 10000. However, still have problems in low junction current density.

Polycrystalline Silicon Thin Film Transistor Fabrication Technology (다결정 실리콘 박막 트랜지스터 제조공정 기술)

  • 이현우;전하응;우상호;김종철;박현섭;오계환
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.212-222
    • /
    • 1992
  • To use polycrystalline Si Thin Film Transistor (poly-Si TFT) in high density SRAM instead of High Load Resistor (HLR), TFT is needed to show good electrical characteristics such as large carrier mobility, low leakage current, high driver current and low subthreshold swing. To satisfy these electrical characteristics, the trap state density must be reduced in the channel poly. Technological issues pertinent to the channel poly fabrication process are investigated and discussed. They are solid phase growth (SPG), Si-ion implantation, laser annealing and hydrogenation. The electrical properties of several CVD oxides used as the gate oxide of TFT are compared. The dependence of the electrical characteristics of TFT on source-drain ion-implantation dose, drain offset length and dopant lateral diffusion are also described.

  • PDF

Current Efficiency and Composit ion of Zn-Cr and Zn-Cr-X Ternary Alloy Electrodeposits (고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금의 전류효율 및 조성)

  • Ye G.C.;Kim D.Y.;Ahn D.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2003
  • The current efficiency and the composition of Zn-Cr and Zn-Cr-X (X : Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA auditive and flow cell plating system. The current efficiency of Zn-Cr alloy decreased with increasing current density, while it increased with the content of Co and Mn of the Zn-Cr-X alloy bath in high current density region. The Cr content in Zn-Cr alloy increased from 1.4-2.7 to $28wt\%$ with increasing current density and the phase structure of the alloys changed from $\eta-Zn$ through $\eta-Zn+\gamma'-ZnCr\;to\;\gamma'-ZnCr$ with Increasing Cr content of the alloys. The Co content in Zn-Cr-Co alloys increased with Co content of the bath, while Cr content of the alloy increased or decreased in low current density region $(10-75A/dm^2)$ or high current density region $(75-100A/dm^2)$, respectively. $\gamma-ZnCo$ phase was formed in the Zn-Cr-Co alloy with above $9.0wt\%$ Co. The content of Mn and Cr in Zn-Cr-Mn alloys increased or decreased with the increase of current density in high current density region, respectively while Cr content of the alloy decreased noticeably with the increase of Mn content in the bath. Two phases of $\delta_1-ZnMn$ and $\gamma'-ZnCr$ were formed in the Zn-Cr-Mn alloy with above $8.6wt\%$ Mn.

Some Characteristics of Ion Beam Source for $\gamma$-Coefficient Measurement of MgO Thin Film (MgO 박막의 $\gamma$ 계수 측정용 이온빔원의 시작 및 동작특성)

  • Jeong, Shin-Soo;Kim, Jun-Ho;Kim, Hee-Je;Cho, Jung-Soo;Park, Chung-Hoo;Park, Cha-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1752-1754
    • /
    • 1997
  • The Kaufman type ion beam source with focusing lens was prepared to measure $\gamma$-coefficient of MgO thin film. Initial discharge of the system was started with the discharge voltage of 25V, the cathode filament current of 5.5A at the constant magnetic field of 150G. The system shows the maximum ion current density of $120{\mu}A/cm^2$, energy dispersion of 200eV and beam divergence of $30^{\circ}$ under the condition of Ar gas pressure $2.5{\times}10^{-4}Torr$, the beam voltage of 500V, the discharge voltage of 90V, the accelerator voltage of -200V and the cathode filament current of 6.1A. When the focusing lens was installed onto the ion beam source, the spreadness diameter of ion beam was about 10mm.

  • PDF

Anodic Oxidation of Iodate to Periodate by Lead Peroxide Anode (전착과산화납양극에 의한 옥소산염 전해산화)

  • Chong Woo Nam;Hak Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.324-329
    • /
    • 1971
  • In order to evaluate the mechanism of electrolytic oxidation of iodate and to determine the optimum conditions for the electrolysis, studies were made using the cells without diaphragm and the lead peroxide anode. Results are summarized as followings: 1) Current density vs. anode potential curve by lead peroxide electrode had the different limiting current densities from platinum electrode and was more positive than platinum electrode. 2) Additions of potassium bichromate in the electrolyte contribute to maintain high current efficiency. 3) In the acid and alkaline regions, the current efficiencies decreased by reduction of iodate and discharge of hydroxyl ion, so maximum current efficiency was shown at pH 7. 4) Higher current density lowered the current efficiency in the region of 60-80% conversion of iodate. 5) Influence of the conversion on current efficiency in the region of 60-80% conversion of iodate.

  • PDF

The Study on the Etching Characteristics of Pt Thin Film by $O_2$ Addition to $_2$/Ar Gas Plasma (Cl$_2$/Ar 가스 플라즈마에 $O_2$ 첨가에 따른 Pt 식각 특성 연구)

  • 김창일;권광호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.29-35
    • /
    • 1999
  • Inductively coupled plsama etching of platinum thin film was studied using $O_2$ addition to $Cl_2$/Ar gas plasma. In this study, Pt etching mechanism was investigated with Ar/$Cl_2$ /$O_2$ gas plasma by using XPS and QMS. Ion current density was measured with Ar/$Cl_2$ /$O_2$ gas plasma by using single Langmuir probe. It was confirmed by using QMS and single Langmuir probe that Cl and Ar species rapidly decreased and ion current density was also decreased with increasing $O_2$ gas ratios. These results implied that the decrease of Pt etch rate is due to the decrease of reactive species ans ion current density with increasing $O_2$ gas mixing ratios. A maximum etch rate of 150nm/min and the oxide selectivity of 2.5 were obtained at Ar/$Cl_2$ /$O_2$ flow rate of 50 seem, RF power of 600 W, dc bias voltage of 125 V, and the total pressure of 10 mTorr.

  • PDF