• Title/Summary/Keyword: ion conductivity

Search Result 850, Processing Time 0.034 seconds

Development of Open Tubular Capillary Columns for Ion Chromatography (이온 크로마토그래피용 Open Tubular Capillary 컬럼의 개발)

  • Pyo, Dong Jin;Kim, Ho Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, open tubular capillary columns for ion charomatography were developed to analyze trace amount of ions in samples. When small I,D. capillary column length is 1.0~5.0 m. The capillary columns were made using fused silica capillary(I.D:50㎛) and DMEOHA latex particles. The new conductivity cell and suppressor were also developed and made for capillary column ion chromatography. When several anions(fluoride, nitrite, nitale,chlorate,phosphte, sulfate) were analyzed using these capillary columns. reproducible and good chromatograms were obtained.

  • PDF

Optimization Study on Polymerization of Crosslink-type Gel Polymer Electrolyte for Lithium-ion Polymer Battery (리튬이온폴리머전지용 가교형 겔폴리머전해질의 중합조건 최적화 연구)

  • Kim, Hyun-Soo;Moon, Seong-In;Kim, Sang-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2005
  • In this work, polymerization conditions of the gel polymer electrolyte (GPE) were studied to obtain better electrochemical performances in a lithium-ion polymer battery. When the polymerization temperature and time of the GPE were 70$^{\circ}C$ and 70 min, respectively, the lithium polymer battery showed excellent a rate capability and cycleability. The TMPETA (trimethylolpropane ethoxylate triacrylate)/TEGDMA (triethylene glycol dimethacrylate)-based cells prepared under optimized polymerization conditions showed excellent rate capability and low-temperature performances: The discharge capacity of cells at 2 Crate showed 92.1 % against 0.2C rate. The cell at -20 $^{\circ}C$ also delivered 82.4 % of the discharge capacity at room temperature.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Study of the Nonstoichiometry and Physical Properties of the$Nd_{1-x}Sr_xFeO_{3-y}$ System

  • Chul Hyun Yo;Hyung Rak Kim;Kwang Hyun Ryu;Kwon Sun Roh;Jin Ho Choy
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.636-640
    • /
    • 1994
  • The nonstoichiometric perovskite solid solutions of the $Nd_{1-x}Sr_xFeO_{3-y}$ system for the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at $1150^{\circ}C$ in the air pressure. The compound of x=0.00, NdFe$O_{3.0}$, contains only $Fe^{3+}$ ion in octahedral site and the others involves the mixed valence state between $Fe^{3+}$ and $Fe^{4+}$ ions. The mole ratio of $Fe^{4+}$ ion or the ${\tau}$-value increases steadily with the x-value and then is maximized at the compositionof x= 1.00. The nonstoichiometric chemical formulas of the system are formulated from the x, ${\tau}$ and y values. From the Mossbauer spectroscopy, the isomer shift of $Fe^{3+}$ ion decreases with the increasing x-value, which is induced by the electron transfer between the$Fe^{3+}$ and $Fe^{4+}$ ions. The transfer is made possible by the indirect interaction between $Fe^{3+}$ and$Fe^{4+}$ ions via the oxygen ion. The eg electrons of the$Fe^{3+}$ ions are delocalized over all the Fe ions. Due to the electron transfer, the activation energy of electrical conductivity is decrease with the increasing amount of $Fe^{4+}$ ion.

Synthesis of Self-doped Poly(PEGMA-co-BF3LiMA) Electrolytes and Effect of PEGMA Molecular Weight on Ionic Conductivities (자기-도핑형 poly(PEGMA-co-BF3LiMA) 전해질의 합성과 이온전도도에 대한 PEGMA분자량의 영향)

  • Kim, Kyung-Chan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • Polymer electrolytes consisted of $BF_3LiMA$ and 300 (PEGMA300) or 1100 (PEGMA1100) g $mol^{-1}$ of PEGMA were prepared and the electrochemical properties were characterized. Interestingly, the AC-impedance measurement shows $1.22{\times}10^{-5}S\;cm^{-1}$ of room temperature ionic conductivity from PEGMA1100 based solid polymer electrolytes while $8.54{\times}10^{-7}S\;cm^{-1}$ was observed in PEGMA300 based liquid polymer electrolytes. The more suitable coordination between lithium ion and ethylene oxide (EO) unit might be the reason of higher ionic conductivity which can be possible in PEGMA1100 based electrolytes since it has 23 EO units in monomer. The lithium ion transference number was found to be 0.6 due to the side reactions between $BF_3$ and lithium metal expecially for longer time but 0.9 was observed within 3000 seconds of measuring time which is strong evidence of a single-ion conductor.

Salt Accumulation and Desalinization of Rainfall Interception Culture Soils of Rubus sp. in Gochang-gun, Jeollabuk-do (복분자 비가림 하우스 토양 중 염류집적 요인과 물리적 제염효과)

  • Chung, Byung-Yeoup;Lee, Kang-Soo;Kim, Myung-Kon;Choi, Young-Hee;Kim, Moo-Key;Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.310-317
    • /
    • 2008
  • This study was carried out to investigate the factors of desalinization of the rainfall interception culture soils of Rubus sp. in Gochang-gun, Jeollabuk-do. Soil samples were collected from 85 different sites of the rainfall interception culture soils of Rubus sp. in Gochang-gun, Jeollabuk-do. The electrical conductivity in paste saturation of rainfall interception culture soils ranged from $1.0\sim28.4dS\;m^{-1}$ (average: $4.8dS\;m^{-1}$) and salt affected soil which EC was higher than $4dS\;m^{-1}$, covered nearly 55% of all field surveyed. Salts in rainfall interception culture soils were accumulated by increasing the cultivation period. Electrical conductivity in rainfall interception culture soils was positively correlated with water soluble anions such as chloride ion ($r=0.85^{**}$), nitrate ion ($r=0.94^{**}$), phosphate ion ($r=0.88^{**}$), and sulfate ion ($r=0.84^{**}$), respectively. As a result of desalinization experiments carried out by water management practices, the rinsing method was more effective than leaching method.

Preparation of Cation Exchange Membrane using Polybenzimidazole and Its Characteristic (폴리벤지미다졸(PBI)을 이용한 양이온교환막의 제조 및 특성)

  • Kim, Joeng-Geun;Lee, Sang-Ho;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.265-271
    • /
    • 2012
  • Polybenzimidazole (PBI) was prepared by condensation polymerization using diaminobenzidine (DAB) and isophtalic acid (IPAc). The cation exchange membrane was prepared by introduce the ion exchange group in the PBI polymer. It was confirmed from FT-IR analysis that the prepared PBI powder had same peak compared with commercial PBI power. The ionic conductivity of PBI film was $0.1{\sim}0.9{\times}10^{-2}$ S/cm. The ionic conductivity of prepared SPBI cation exchange membrane showed $3.7{\sim}4.7{\times}10^{-2}$ S/cm and had higher than Nafion117 ($2.0{\times}10^{-2}$ S/cm).

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

The Effect of Synthesis Conditions on the Electrochemical Properties of LiFePO4 for Cathode Material of Secondary Lithium Ion Batteries (리듐 2차 전지용 약극활물질 LiFePO4의 합성 조건에 다른 전기화학적 특성)

  • Kim, Do-Gyun;Park, Hyun-Min;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.121-125
    • /
    • 2006
  • [ $LiFePO_4$ ] is one of the promising materials for cathode material of secondary lithium batteries due to its high energy density, low cost, environmental friendliness and safety. $LiFePO_4$ was synthesized by the solid-state reaction method at 500 - 800°C. The crystal structure of $LiFePO_4$ was analyzed by X-ray powder diffraction. The samples synthesized at 600 and $700^{\circ}C$ showed a single phase of a olivine structure. The particle sizes were increased and the specific surface areas were decreased with heating temperatures. The electrochemical performance was investigated by coin cell test. The discharge capacities at 0.1 C-rate were 118 mAh/g and 112 mAh/g at $600^{\circ}C,\;700^{\circ}C$, respectively. In an attempt to improve the electrical conductivity of cathode materials, $LiFePO_4/graphite$ composite was prepared with various graphite contents. The electrical conductivity and discharge capacity were increased with increasing the graphite contents in composite samples. The rate capabilities at high current densities were also improved.