• 제목/요약/키워드: ion composition

검색결과 798건 처리시간 0.032초

복합 활성탄 전극의 제조 및 축전식 탈염공정 이용 나트륨 이온 제거 (Fabrication of Composite Activated Carbon Electrodes and Sodium Ion Removal by Capacitive Desalination Process)

  • 위은솔;;김근성;윤정우;허양일;장민철
    • Composites Research
    • /
    • 제37권4호
    • /
    • pp.356-362
    • /
    • 2024
  • 본 연구는 농업 폐기물인 왕겨로부터 합성된 활성탄과 코코넛으로부터 합성된 상용 활성탄을 사용하여 제작된 축전식 탈염 전극의 나트륨 이온 제거 효율을 평가하였다. 아민화된 왕겨로부터 합성된 활성탄과 상용 활성탄의 비율이 각각 1:1인 Composite 1 전극과 2:1인 Composite 2 전극을 제작하여, 주사전자현미경과 표면적 분석을 통해 구조 변화를 관찰하였다. 나트륨 이온 제거 효율은 활성탄의 조성과 전압을 변수로 하여 시간에 따라 평가하였다. 그 결과, 왕겨로부터 합성된 활성탄을 포함한 더 많이 포함한 Composite 2 전극이 가장 높은 제거 효율을 보였다. Composite 2 전극은 1.2 V에서 최대 75%의 나트륨 이온 제거 효율을 달성하였으며, 이는 다양한 전압 조건에서 성능 평가를 통해 확인되었다. 또한, 전극의 실제 적용 가능성을 입증하기 위해 재사용 성능을 평가한 결과, 7회의 재사용 후에도 65% 이상의 흡착 성능을 유지하는 것으로 나타났다.

안산·시흥 산업단지 지역 PM2.5 중 이온, 탄소, 원소성분의 특성 연구 (A Study on the Characteristics of Ion, Carbon, and Elemental Components in PM2.5 at Industrial Complexes in Ansan and Siheung)

  • 이혜원;이승현;전정인;이정일;이철민
    • 한국환경보건학회지
    • /
    • 제48권2호
    • /
    • pp.66-74
    • /
    • 2022
  • Background: The health effects of particulate matter (PM2.5) bonded with various harmful chemicals differ based on their composition, so investigating and managing their concentrations and composition is vital for long-term management. As industrial complexes emit considerable quantities of pollutants, higher PM2.5 concentrations and chemical component effects are expected than in other places. Objectives: We investigated the concentration distribution ratios of PM2.5 chemical components to provide basic data to inform future major emissions control and PM2.5 reduction measures in industrial complexes. Methods: We monitored five sites near the Ansan and Siheung industrial complexes from August 2020 to July 2021. Samples were collected and analyzed twice per week in spring/winter and once per week in summer/autumn according to the National Institute of Environmental Research in the Ministry of Environments' Air Pollution Monitoring Network Installation and Operation Guidelines. We investigated and compared composition ratios of 29 ions, carbon, and elemental components in PM2.5. Results: The analysis of PM2.5 components at the five sites revealed that ion components accounted for the greatest total mass at approximately 50% while carbon components and elemental components contributed 23~28% and 8~10%, respectively. Among the ionic components, NO3- occupies the greatest proportion. OC occupies the greatest proportion of the carbon components and sulphur occupies the greatest proportion of elemental components. Conclusions: This study investigated the concentration distribution ratios of PM2.5 chemical components in industrial complexes. We believe these results provide basic chemical component concentration ratio data for establishing future air management policies and plans for the Ansan and Siheung industrial complexes.

새만금간척지 지역 대기 중 초미세먼지 (PM2.5) 오염 특성 평가 (Characteristics of Fine Particulate Matter (PM2.5) in the Atmosphere of Saemangum Reclaimed Land Area)

  • 송지한;김정수;홍성창;김진호
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.25-32
    • /
    • 2022
  • To understand the distribution characteristics of PM2.5 concentration in the Saemangeum Reclamation Area and nearby areas, three points of the background area, the occurrence area, and the affected area were selected and samples were collected for each season. The chemical composition was determined. As a result of analyzing the chemical composition contained in PM2.5, NO3- (7.2 ㎍/m3), SO42- (4.3 ㎍/m3), NH4+ (4.3 ㎍/m3), OC (2.5 ㎍/m3), Si (1.3 ㎍/m3) m3) and EC (0.5 ㎍/m3) seemed to be the main components, and NO3-, SO42-, NH4+, which are components that form secondary particles, occupied a large proportion. The composition ratio of PM2.5 was investigated in the order of ion component (56.8%) > Unknown (27.4%) > carbon component (11.8%) > heavy metal component (4.0%). During the PM2.5 high concentration case days, the ionic component accounted for 90.7% during atmospheric stagnation cases, whereas the chemical composition ratio was in the order of ionic component (51.7%) > heavy metal component (41.5%) > carbon component (6.8%) during yellow dust cases. It was found that the characteristic of PM2.5 in the Saemangeum reclaimed land and surrounding areas is mainly influenced by outside (domestic and overseas) throughout the year. Ion components accounted for the largest portion of PM2.5 components in this area, but there were few sources of SOx and NOx emission in the Seamangeum area, which are precursors for secondary particle formation. Therefore, it is judged that most of these are generated and influenced as a secondary reaction in the atmosphere from the outside.

ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스 (Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System)

  • 오영제;정형진;이희수
    • 한국세라믹학회지
    • /
    • 제24권2호
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

플레싱 스크랩으로부터 회수된 동물성 유지의 전처리 방법이 유리지방산 제거 및 지방산 조성에 미치는 영향 (A Study of the Influence of Pretreatment of Animal Fat Recovered from Fleshing Scrap on the Eliminating FFA and Fatty Acid Composition)

  • 신수범;민병욱;양승훈;박민석;김해성;백두현
    • 한국응용과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.58-64
    • /
    • 2008
  • Pretreatment of eliminating FFA is needed to make biodiesel from animal fat recovered from leather wastes because its acid value is high. This study was carried out to investigate the influence of 4 different pretreatment methods, which are heterogeneous catalyst method, ion exchange resin method, low pressure.high temperature method, and alkali method on the eliminating FFA and fatty acid composition. The results showed that the rate of eliminating FFA increased in the order of alkali method > catalyst method > low pressure high temperature method > ion exchange method. In the case of pretreatment of alkali method using NaOH, the rate of eliminating FFA appeared more than 86% regardless of acid value. Therefore, it was considered that alkali method using NaOH was the most effective in the view of economical and productive aspects, taking it into account that the acid value of animal fat recovered from fleshing scrap generated during leather making processes was 7 to 8.

자몽종자추출물과 은이온 용액이 숙주나물의 저장품질에 미치는 영향 (Effects of Grapefruit Seed Extract and An ion Solution on Keeping Quality of Mungbean Sprouts)

  • 조숙현;허재영;최용조;강진호;조성환
    • 한국식품저장유통학회지
    • /
    • 제12권6호
    • /
    • pp.534-539
    • /
    • 2005
  • 항균효과가 있는 자몽종자추출물과 은이온 용액을 이용하여 숙주나물의 유통 중 신선도 연장을 위하여 $30\;{\mu}m$ polypropylene(PP)필름에 숙주나물 200 g을 침지하지 않은 처리를 대조구로 하여 은이온 용액, GFSE 50 ppm 및 100 ppm 처리, 은이온 용액에 GFSE 50 ppm 및 100 ppm 처리를 하여 밀봉 포장한 후 냉장 온도인 $5^{\circ}C$에 저장하면서 실험한 결과이다. 저장 6일째 포장내 이산화탄소와 산소농도를 보면, 이산화탄소농도는 $4.2\~5.3\%$의 농도를 나타내었고, 산소농도는 $1.0\~1.1\%$농도를 나타내었다. 중량감소율은 모든 처리에서 $1.0\%$ 내외의 감소율을 보여, 중량 감소율에서는 큰 차이를 보이지 않았다. 경도는 모든 처리에서 저장 4일 이후에 낮아지는 경향이었고, 색도변화는 자엽과 배축 부분의 경우 저장4일째까지 모두 큰 차이를 보이지 않았고, 저장 6일째의 경우 자엽부분에서 갈변이 심하였다. 저장 중 숙주나물의 비타민C함량의 경우 침지를 하지 않은 처리(대조구)에서 비타민C 함량이 가장 낮은 반면, 다른 모든 처리에서 저장 기간동안 비타민C함량이 서서히 낮아져서 지연되는 효과를 나타내었다. 미생물변화에서는 총균수의 경우 대조구에 비해 자몽종자추출물과 은이온 용액에서 미생물의 증식이 억제됨을 알 수 있었고, 황색포도상구균의 경우 은이온 용액과 은이온 용액에 GFSE 100 ppm을 첨가한 처리에서는 저장 기간동안 전혀 검출이 되지 않았으며, 효모수는 저장기간에 따라 점차 증가하는 대조구와 달리 자몽종자추출물과 은이온 용액에서 효모의 증식이 억제됨을 알 수 있었다. 따라서 대조구의 상품성 유지기간이 2일인데 반해, GFSE 100 ppm처리와 은이온 용액에 GFSE 100 ppm 농도로 처리한 것이 6일로 4일정도의 신선도 연장과 함께 상품성이 있으므로 유통 시 미생물을 억제시킬 수 있고, 항균효과가 있는 세척수를 이용하는 것도 저장기간 연장과 함께 신선도 유지에 있어서 도움이 될 수 있다.

제주시 미세먼지(PM2.5)에 함유된 원소의 조성특성 및 오염원 (Elemental Composition and Source Identification of PM2.5 in Jeju City)

  • 이기호;허철구
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.543-554
    • /
    • 2018
  • From November 2013 to December 2016, ambient fine particulate matter ($PM_{2.5}$) was sampled in the downtown area of Jeju City, South Korea, which has seen rapid urbanization. The atmospheric concentrations of elements were measured in the $PM_{2.5}$ samples. This study focused on Cd, Cr, Cu, Mn, Ni, Pb, As, Sb, Sn, V, and Zn. The concentrations of Al, Na, K, Fe, Ca, Mg, Sr, and La were also obtained for reference. The objectives of this study were to examine the contributions of these elements to $PM_{2.5}$ concentrations in downtown Jeju City, and to investigate the inter-element relationships and the elemental sources by using enrichment factors and principal components analysis (PCA). A composition analysis showed that the 19 elements constituted 6.65 % of the $PM_{2.5}$ mass, and Na, K, Al, Fe, Ca, Mg, and Zn constituted 98 % of the total ion mass. Seasonal trend analysis for the sampling period indicated that the concentrations of the elements increased from November to April. However, no substantial seasonal variations were found in the concentrations of the elements. The composition ratios of some elements (Cu/Zn, Cu/Cd, Cu/Pb, V/Ni, and V/La) were found to be out of range when compared to the literature from other urban areas. The ratios between the elements and the PCA results showed that local contaminant sources in Jeju City rarely influence the composition of $PM_{2.5}$. This suggests that the major sources of $PM_{2.5}$ in Jeju City may include long-range transport of fine particulate matter produced in other areas.

편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링 (Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System)

  • 정찬호;김천수;김통권;김수진
    • 한국광물학회지
    • /
    • 제10권1호
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

3차원 원자 침 분석기 (3-DAPT)와 이차이온 질량분석기 (SIMS)을 이용한 보론 첨가 강의 미세구조와 보론의 원자 단위 분석 (3-D Atom Probe Tomography and Secondary ion Mass Spectroscopy techniques for the microstructure and atomic scale investigation on the state of Boron in Steels)

  • 설재복;강주석;양요셉;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2008
  • Newly developed Atom Probe Tomography (APT) technique can provide the highest available spatial resolution, 3D tomography imaging and quantitative chemical analysis in a sub-nm scale. As a complementary technique to APT, Nano-secondary ion Mass Spectroscopy (SIMS) also provides the boron distribution in micro-scale. Therefore, the exact behavior of boron at either grain boundary or grain interior in steels can be investigated by the combination of APT and SIMS techniques from the sub-nanometer scale to the micrometer scale. The results obtained by both APT and SIMS revealed that the boron atoms were mainly segregated to the grain boundaries rather than to the grain interior in the steels containing 50ppm and 100ppm boron. It also found that carbon atoms were segregated at the boron enriched regions, which were thought to be retained austenite phase due to the chemical composition of carbon atoms.

  • PDF