• Title/Summary/Keyword: iodine adsorption

Search Result 79, Processing Time 0.019 seconds

A New Method to Control the Coverage of Irreversibly Adsorbing Sb on Au Electrode

  • 류호열;이충균
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.385-389
    • /
    • 1997
  • We report on the development of a new method to control the coverage of a metal film prepared with immersion method. An Sb species in solution adsorbed irreversibly at an open circuit potential (∼0.2 V) as an oxygenous Sb(Ⅲ) on a clean Au electrode, and the adsorbates showed voltammetric features in the potential range from 0.1 V to - 0.4 V. The full coverage of the Sb adsorbates was ∼0.45. On the contrary, the Sb species in solution did not adsorb at all on iodine-covered Au electrode surfaces, when the iodine coverages were more than 0.25. As the iodine coverage decreased below 0.25, however, the irreversible adsorption of Sb took place and the coverage of Sb increased accordingly. This electrochemical behavior has been interpreted as the penetration of the adsorbing Sb species in solution through open spaces among the iodine adlattices of coverages less than 0.25. With the manipulation of the iodine coverage, the controllable range of Sb coverage was from 0 to 0.45, i.e. the full coverage of Sb. In addition, the reversible deposition of Sb on an iodine-saturated Au electrode with voltammetric scan has been observed, which is contrasted with the adsorptive behavior of Sb on the clean Au electrode.

A Study on the Manufacture of Activated Carbon for Water Treatment (수처리용 활성탄 제조에 관한 연구)

  • 장성호;최동훈
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.79-85
    • /
    • 2003
  • The purpose of this study was to disclose the manufacturing process of activated carbon using coal. It investigated the influences on the physical properties that were manufactured activated carbon by using anthracite coal, bituminous coal under carbonizated and activated condition. The adsorption capacities of organic material were superior when the ash content was lower 5∼10%, and the iodine value was about 1,000 mg/g, the adsorption capacity decreased rapidly when ash content was over 15%. The manufactured activated carbon were found characteristics such as the iodine value was over 1,031 mg/g, the specific surface area was over 1,032 $m^2$/g and the hardness was over 95% under manufacturing conditions which were carbonizated temperature of $600^{\circ}C$( 180 minute), activated temperature of 95$0^{\circ}C$(210 minute) and steam weight of 6 $m\ell$/min.100 g coal.

Heavy Metal Adsorption Characteristics and Produced of Food Waste Activated Carbon (음식물류 폐기물 활성탄의 제조 및 중금속 흡착특성)

  • Lee, Jun-Hee;Lee, Seung-Chul;Ju, Min;Kim, Ji-Hye;Lee, Don-Gil
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1601-1608
    • /
    • 2015
  • This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component($ZnCl_2$) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to $800^{\circ}C$ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at $700^{\circ}C$ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.

Effect on Particle Size of Activated Carbons for Coagulation and Adsorption (활성탄 입자크기가 응집 및 흡착에 미치는 영향)

  • Kim, Young-Il;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Adsorption isotherms and kinetics for taste and odor (T&O) compounds and natural organic matters (NOMs) were performed to evaluate the impacts of activated carbon particle size on coagulation and adsorption. Adsorption capacities for iodine, T&O compounds, and NOM of all the activated carbons under #325 mesh were more excellent than those of virgin activated carbons. Small activated carbon particles were more rapidly adsorbed low molecular weight T&O compounds in the water, while those were slowly adsorbed high molecular weight NOM. When the activated carbon and alum were added simultaneously, the adsorption capacity for organics was better than alum was added alone.

Effects of Silver Treatment and the Physical and Chemical Properties of Spherical Activated Carbon

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.569-575
    • /
    • 2009
  • In this study, the effects of silver treatment and activation on the physical and chemical properties of spherical activated carbon (SAC) were studied. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity, pressure drop and antibacterial effects. BET surface areas of SACs decreased with an increase of the amount of PR before and after activation, and the BET surface areas of SACs were found to be about 2-3 times the size of those before activation. The XRD patterns showed their existing state as stable Ag crystals and carbon structure. The Ag particles are seaweedlike and uniform, being approximately 5-10 μm in size deposited on the surface of activated carbon. All of the samples had much more iodine adsorption capability after activation than before activation. The strength values of SACs increased with an increase of the amount of PR, and there was a smaller drop in the strength values of SACs with silver treatment than with non-silver treatment after activation. The Ag-SAC composites showed strong antibacterial activity against Escherichia coli (E. Coli).

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Choi, Jong-Geun;Meng, Ze-Da
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.535-542
    • /
    • 2010
  • In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.

Preparation of Adsorbent from Sewage Sludge by Steam Activation and Adsorption Characteristic (하수슬러지의 수증기 활성화법을 이용한 흡착제 제조와 흡착특성)

  • Jung, Dong-Hyun;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.515-520
    • /
    • 2007
  • Recently, the treat of sludge is usually progressed by ocean disposal. But it will be totally banned by content of its heavy metal according to London Dumping Convention, gradually. The stable way of treat of sewage sludge should be examined urgently. To solve the problem, recently, there are efficient and environment-oriented method. One of them is to produce absorbent through the activation. This study produces absorbent through steam activation. As basic experiment, optimum activation condition for preparation of good absorbent is researched through study of the fellowing variables : steam flow rate, activated temperature, activation time. As the result of this with standard on iodine adsorptivity, it is chosen, that steam flow rate "30 mL/hr", activation temperature $"500^{\circ}C"$, activation time "60 minutes". At the time, iodine adsorptivity and yield shown that 228.4 mg/g, 77.23%. And also, by using nitrogen adsorption, SEM and EDS are confirmed that pore development, specific surface area, mean pore size, chemical component and content. Pore developed by steam activation is also confirmed that it is micropore.

Studies on Pore Characteristics of Microporous Carbons Prepared with Different Types of Silica Templates

  • Manocha, S.;Movaliya, Narendra
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2007
  • Microporous carbons with narrow pore size distribution have been successfully synthesized by using hydrolyzed and calcined silica as templates and phenol formaldehyde (pf) resin as carbon precursor. Phenol formaldehyde-silica micro composites were prepared by solution route. Subsesequently, silica templates were removed by HF leaching. Resulting carbons were steam activated. The porous carbons were characterized by nitrogen adsorption-desorption isotherm, SEM, FTIR analysis, iodine adsorption, thermogravimetry analysis, etc. Adsorption isotherms show that the porous carbon prepared from calcined silica as templates are microporous with 88% pores of size <2 nm porosity and are of type I isotherm, while porous carbon prepared by using hydrolyzed silica are microporous with 89% microporosity, shows hysteresis loop at high relative pressure indicating the presence of some mesoporosity in samples. The microporosity in porous carbon materials has a bearing on the nature of silica templates used for pore formation.

Micropore Analysis and Adsorption Characteristics of Activated Carbon Fibers (활성탄소섬유의 미세기공 분석 및 흡착특성)

  • Moon, Dong-Cheul;Lee, Kwang-Ho;Kim, Chang-Soo;Kim, Do-Hyung;Kim, Mi-Ran;Shin, Chae-Ho;Park, II-Young;Nam, Seoung-Youl;Lee, Chang-Gi
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-95
    • /
    • 2000
  • Three grades of activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscose rayon and cotton. The ACFs an exhibited type I isotherms on the adsorption of nitrogen or argon. Micropore analysis revealed that the ACFs have uniform micropore size distribution in which their peak diameters were in the range of $5.6{\pm}0.3{\AA}$. The BET surface area of ACFs up to $1600m^2g^{-1}$ was proportional to the adsorption capacity of iodine. The BET values of the ACFs prepared were proportional to the burn-off degree of the products.

  • PDF

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.