• Title/Summary/Keyword: involute

Search Result 160, Processing Time 0.022 seconds

FEM Analysis of Closed-Die Forging of a Bevel Gear (베벨기어 페쇄단조의 유한요소해석)

  • Park, Jong-Jin;Lee, Jung-Hwan;Lee, Young-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2458-2467
    • /
    • 1996
  • The rigid-plastic finite element analysis was performed for analysis of ofhot forging and cold sizing of a bevel gear. Two dimensional analysis was carried out to investigate the defect occurrence on vertical symmetric planes during hot forging and three dimensional analysis was to understand the filling behavior on horizontal planes during cold sizing. The involute curve of a tooth was approximated by a circle for convenience in the present analysis. In order to estimate the elastic deformation of the gear and dies during cold sizing, linear elastic finite element analysis was performed. Results of the analysis can be used to predict grain flows and strength distributions in the forged gear, and to design dies and an appropriate preform for the cold sizing.

Development of Expert System for Designing Power Transmission Gears (II) (동력전달용 치차설계 전문가 시스템 개발연구 II)

  • 정태형;변준형;이동형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.122-131
    • /
    • 1992
  • An expert system is developed which can design the power transmission involute cylindrical gears on the basis of strength and durability. Bending strength, surface durability, scoring, and wear probability are considered as the basis. The basic components of the expert system are knowledge base, inference engine, and working memory. The knowledges in knowledge base are classified hierarchically into the knowledges used in selection of gear type, selection of materials, and determination of K factor and are represented by rules. In the inference engine two inference methods are implemented with the depth first search method. For-ward chaining method is introduced in the selection of gear type and materials and in the determination of K factor. Backward chaining method is introduced in the detailed design of module and face width in accordance with the validation of strength. And inference efficiency is achieved by constructing the part needing a lot of numerical calculations in strength estimation separately from inference mechanism. The working memory is established to save the results during inference temporarily. In addition, design database of past design results is built for consultation during design and knowledge acquisition facility, explanation facility, and user interface are included for the usefulness of user. This expert system is written with the PROLOG programming language and the FORTRAN language in numerical calculation part which interfaced with PROLOG and can also be executed on IBM-PC compatible computer operated by MS-DOS alone.

Development of harmonic drive using cycloide tooth profile (사이크로이드 치형을 이용한 하모닉 감속기의 개발)

  • Lee, Chong-Won;Oh, Se-Hoon;Kim, Jun-Cheol;Jeon, Han-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1166-1173
    • /
    • 1997
  • Due to progress in manufacturing techniques, the performance of the harmonic drive has been improved but not sufficiently. One of the important problems which the current harmonic drive has is that while there is the potential for having a wider tooth contact area, the total number of teeth engaged simultaneously is still small. This is mainly due to the involute tooth profile. Hence, in this study, the cycloid-type tooth profile is developed to improve this problem. This paper represents the design methodology and performance evaluation f the cycloid-type harmonic drive. Cycloide tooth profile was derived by analyzing geometry of the tooth engagement and the contact mechanisms of the tooth which were examined and analyzed by load analysis. The stress due to elastic deformation of a flexspline was also obtained by approximate formula and computer analysis. Finally, the cycloid-type harmonic drive with 1:100 speed ratio was manufactured and the performance of the harmonic drive was evaluated.

An upper-bound analysis for the guiding type forging of helical gears (헬리컬기어의 안내형 단조에 관한 상계해석)

  • Choi, J.C.;Choi, Y.;Tak, S.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1364-1372
    • /
    • 1997
  • In this paper, the forging of helical gears has been investigated. Punch is tooth-shaped as is the die insert. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material of billet flows into the tooth region. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle and friction factor on the forging of helical gears. Some forging experimentswere carried out with aluminum alloy to show the validity of the analysis. Good agreement was found between the predicted values of the forging load and obtained from the experimental results.

A Study on Tooth Profile Error in Internal Gear Shaping (내치차 절삭시의 치형오차에 관한 연구)

  • 박천경;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.154-162
    • /
    • 1991
  • In this study, the simulation program is developed where the tooth profile error in internal gear shaping is calculated considering several factors which affect it. This factors are the circular feed of the pinion cutter, the interference by the geometric conditions of the cutter and the internal gear, the deviation from the theoretical involute profile of the cutter and the eccentricity of the cutter and the internal gear. With this program, the effects are investigated which the geometric conditions and the cutting conditions in internal gear shaping have on the tooth profile error of the internal gear. The condition for the minimization of it is derived and then the results of simulation are adequately verified by measurements of internal gears cut by a pinion cutter.

A Study on the Bending Strength of Internal Gear-With investigation of Stress State around Pitch Point- (내접치차의 굽힘강도에 관한 연구-피지점 부근의 응력상태 파악을 포함하여-)

  • 정태형;변준형;이청신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1126-1133
    • /
    • 1994
  • When designing an internal gear. the bending strength around pitch point as well as that at tooth root fillet should be considered because the bending stress around pitch point may occur as high as that at tooth root fillet. In this study, including stress state around pitch point, the bending strength (tensile side and compressive side) of internal gear tooth is investigated by the use of the finite element method(FEM) with regarding many influencing factors of cutter and gear geometries. Then, the critical sections around pitch point and at tooth root fillet are determined, and the simple formulae based on nominal stresses(bending, compressive, and shear) are derived for the calculations of actual stresses as the functions of tooth thicknesses and radii of curvatures of involute and fillet curve at those critical sections. The stresses calculated by the formulae agree well with those by the FEM. And the bending stresses around pitch point and at tooth root are easily estimated by the use of those formulae, therefore, those formulae are useful for the purpose of the design or the bending strength estimation of internal gear.

A study on the clamping type forging of helical gear (헬리컬기어의 구속형 단조에 관한 연구)

  • Choi, J.C.;Choi, Y.;Tak, S.J.;Cho, H.Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1827-1836
    • /
    • 1997
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical bilet placed in a die insetr. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduce to re4present tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears. Some firgiing experiments were catrried out with aluminium alloy to show the validity of the analysis. Good agreement was found between the predicted values of the forging load and obtained from the experimental results.

Gear Train Control in the Automobile (차량용 복합 기어열 제어)

  • Han, Chang-Woo;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • Gear train in the automobile to be used for controlling gas flow in automobiles consists of spur gears with involute tooth type in multiple stages. This spur gear is designed considering to the high power transfer efficiency, bending stress and contact stress in the static and dynamic analysis. The torque has been increased simultaneously the angular velocity has been decreased through the stages after being supplied by AC synchronous motor. This apparatus is controlled by electrical devices such as the PIC microprocessor, hall sensor and other electric components. By comparing the preset data of PIC microcomputer which is supplied by external DC electric power with the value set of hall sensor which detects the rotation angle position, PIC microcomputer thus controls AC motor and gear train according to the program algorithm which includes the on-off control and PWM motor driving method. As the result of the experiment such as performance, fatigue, torque test, we can conclude that this system is superior to the same and familiar foreign systems.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

A Study on the Design of an Asymmetric Algebraic Scroll Expander (비대칭 대수나선 스크롤 팽창기 설계에 관한 연구)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Lee, Young-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.122-129
    • /
    • 2014
  • In order to extract shaft power from thermal energy in a R134a Rankine cycle as waste heat recovery system of a passenger car, a scroll expander has been designed. Algebraic spiral is adopted as the base curve for scroll wrap profile in the compact scroll design. About 19% reduction in scroll diameter is accomplished when compared to the conventional involute scroll. Performance analysis on the designed scroll expander shows that the expander efficiency is 85.5% at the vehicle speed of 120 km/hr and it decreases to 67.2% at 60 km/hr, provided that the scroll clearance is kept at 10 ${\mu}m$. The expander can produce shaft power equivalent to about 13~14% of the driving power within the speed range of 60~120 km/hr.