• 제목/요약/키워드: inviscid

검색결과 326건 처리시간 0.025초

액체 필름 끝단에서의 유동특성에 관한 수치연구 (Blob and Wave Formation at the Free Edge of an Initially Stationary fluid Sheet)

  • 송무석;안자일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.307-310
    • /
    • 2002
  • A two-dimensional numerical method for inviscid two-fluid flows with evolution of density interface is developed, and an initially stationary two-dimensional fluid sheet surrounded by another fluid is studied. The Interface between two fluids is modeled as a vertex sheet, and the flow field u÷th the evolution of interface is solved by using vortex-in-cell/front-tracking method. The edge of the sheet Is pulled back into the sheet due to surface tension and a blob is formed at the edge. This blob and fluid sheet are connected by a thin neck. In the inviscid limit, such process of the blob and neck formation is examined in detail and their kinematic characteristics are summarized with dimensionless parameters. The edge recedes at $V=1.06({\sigma}/{\rho}h)^{0.5}$ and the capillary wave Propagating into the fluid sheet must be considered for bettor understanding of the edge receding.

  • PDF

반경류 터보기계 회전차 내의 비점성 유동해석 및 성능예측 (Calculation of Inviscid Flows and Performance Prediction of Radial Turbomachine)

  • 강신형;김영호;최명렬
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.199-207
    • /
    • 1990
  • Inviscid flows in a radial turbomachine and its performance are predicted by using a pannel method. Possibility of the method to be used for design purpose is investigated. The flows in a radial turbomachine are reasonably simulated with several off-design flow rates. The diameter ratio of the rotor and inlet and outlet vane angles are systematically changed so that performance of the machine in various designs are predicted. All the predictions are shown to be in the range of Cordier curve. On the other hand, calculated slip factors are also in good agreement with values given by an empirical formula.

  • PDF

액적이 있는 비점성 공기유동 모델을 이용한 구름속의 천음속 에어포일 수치해석 (NUMERICAL SIMULATION OF A TRANSONIC AIRFOIL IN THE CLOUD WITH THE DROPLET-LADEN INVISCID AIR FLOW MODEL)

  • 염금수;장근식;백승욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.291-293
    • /
    • 2011
  • In this paper, the problem of transonic aerodynamic characteristics of a NACA0012 airfoil is numerically investigated in the inviscid gas-droplet two-phase flow with the compressible two-fluid model. In the present study, the airfoil flight in the cloud is simulated by taking account of the viscous drag of the droplets, the heat transfer, the phase change, and the droplet fragmentation The two-fluid equation system is solved by the fractional-step method and the WAF-HIL scheme. The effects of size and volume fraction of the droplets on the flow characteristics of the airfoil in the cloud are elaborated and discussed.

  • PDF

비점성 평면 정체 유동 응고 문제에 대한 점근적 해석 (An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem)

  • 유주식;엄용균
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

극초음속 유동장의 경계층 해석 (Boundary Layer Analysis in a Hypersonic Flow Field)

  • 손창현;최승;문수연;김재영;이열화
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.165-173
    • /
    • 2004
  • Matching inviscid and boundary layer methods are developed for analysis of hypersonic flow with thick boundary layer. The new equations match all the boundary layer properties with a variation in the inviscid solution near the edge, except for the normal velocity. Computational comparison are peformed for incompressible and compressible flows over a flat plate. Results from the present method are compared with Wavier-Stokes solutions. The present results are in good agreement with Wavier-Stokes solutions. They show that the new technique can provide improved predictions of heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are importantfor for preliminary design.

파동특성을 갖는 쌍곡선형 열전도방정식에 관한 수치해법 (Numerical method of hyperbolic heat conduction equation with wave nature)

  • 조창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.670-679
    • /
    • 1998
  • The solution of hyperbolic equation with wave nature has sharp discontinuties in the medium at the wave front. Difficulties encounted in the numrtical solution of such problem in clude among oth-ers numerical oscillation and the representation of sharp discontinuities with good resolution at the wave front. In this work inviscid Burgers equation and modified heat conduction equation is intro-duced as hyperboic equation. These equations are caculated by numerical methods(explicit method MacCormack method Total Variation Diminishing(TVD) method) along various Courant numbers and numerical solutions are compared with the exact analytic solution. For inviscid Burgers equa-tion TVD method remains stable and produces high resolution at sharp wave front but for modified heat Conduction equation MacCormack method is recommmanded as numerical technique.

  • PDF

Inviscid Rotational Flows Near a Corner and Within a Triangle

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.813-820
    • /
    • 2001
  • Solutions of inviscid rotational flows near the corners of an arbitrary angle and within a triangle of arbitrary shapes are presented. The corner-flow solutions has a rotational component as a particular solution. The addition of irrotatoinal components yields a general solution, which is indeterminate unless the far-field condition is imposed. When the corner angle is less than 90$^{\circ}$the flow asymptotically becomes rotational. For the corner angle larger than 90$^{\circ}$it tends to become irrotational. The general solution for the corner flow is then applied to rotational flows within a triangle (Method I). The error level depends on the geometry, and a parameter space is presented by which we can estimate the error level of solutions. On the other hand, Method II employing three separate coordinate systems is developed. The error level given by Method II is moderate but less dependent on the geometry.

  • PDF

A Study on Prediction of the Base Pressures for an Axi-Symmetric Body

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1423-1433
    • /
    • 2001
  • A flow modeling method has been developed to analyze the flow in the annular base (rear- facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhaust jet. Real values of exhaust gas properties and temperature at an altitude of 30, 000 feet are employed. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conserva- tion of mass, momentum and energy for the wake flow field is achieved by multiple iterations with modest computer requirements.

  • PDF

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

  • Kim, Namkwon
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.53-56
    • /
    • 2013
  • We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough($u{\in}W^{2,p}$, p>2), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient of the corresponding solution of the Euler equations belongs to certain Orlicz spaces. As a corollary, if the initial vorticity is bounded and small enough, we obtain a sublinear rate of convergence.

Wave Motions in Stratified Fluids by a Translating Plate

  • Joo Sang-Woo;Park Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.882-895
    • /
    • 2006
  • Surface and interfacial waves in two superposed horizontal inviscid fluids of finite depths are studied. The flow is induced by translating a vertical rigid plate with a prescribed velocity. Analytical solutions that accurately predict the motion of the free surface and the interface are obtained by using a small-Froude-number approximation. Three different velocities of the plate are considered, while flows induced by any arbitrary motion of the plate can be easily analyzed by a linear superposition of the solutions obtained. It is shown that pinching of the upper layer can occur for a sufficiently thin upper layer, which leads to its rupture into small segments. Other interesting phenomena, such as primary and secondary wiggles generated on the interface near the wavemaker, are discussed.