• 제목/요약/키워드: inverter

검색결과 5,618건 처리시간 0.029초

아날로그 적분기를 이용한 맥동전압 보상형 순시추종 PWM 제어기를 적용한 인버터 (Ripple Voltage Compensation Instantaneous Follow Controller of Inverter by using Analog Integrator)

  • 라병훈;이현우;김광태
    • 전력전자학회논문지
    • /
    • 제9권4호
    • /
    • pp.381-389
    • /
    • 2004
  • 본 논문에서는 입력단 커패시터를 제거한 인버터의 제어에 아날로그 적분기를 이용한 새로운 비선형 제어 기법인 순시보상형 PWM 제어회로를 적용하고 있다. 비선형 순시보상형 PWM 제어기는 순시 입력전압의 변동에 대한 보상과 제어기준값에 대한 추종이 스위칭 한 주기 내에서 이루어지는 다이나믹하고 강인한 응답성을 가지고 있으며, 아날로그 소자를 사용하고 있어 제어회로가 간단하면, 인버터 입력 맥동전압을 보상함으로 대형의 평활용 커패시터가 필요치 않아서 소형, 저가형으로 부피가 적은 인버터를 제작 할 수 있다는 장점을 가지고 있다. 이러한 장점을 가지고 있는 순시보상형 PWM 제어 인버터를 기존의 VVVF 제어형 전동기 인버터 시스템을 대치하여 저가이고 소형의 인버터 시스템으로 제안하고 실험을 통하여 우수한 동작특성을 확인하고 있다.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

ST Quasi Z-소스 인버터의 스트레스 저감과 출력전압 특성 (Characteristics of the Stress Reduction and Output Voltage of ST(Switched Trans) Quasi Z-Source Inverter)

  • 김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper proposes a ST(Switched Trans) quasi Z-source inverter using a Switched Trans Cell combing the characteristics of a Switched Inductor Cell and Trans. A DC link inductor of the conventional quasi Z-source inverter is alternated with Switched Trans Cell of the proposed ST quasi Z-source inverter. Trans Cell of the proposed method consists of one Trans and two diodes, and the proposed method has higher and more various boost function than the conventional quasi Z-source inverter by simply changing the turns ratio of primary and secondary of the Trans. The validity of the proposed ST Z-source inverter was confirmed by PSIM simulation and a DSP based experiment under the input voltage 48V and output phase voltage 30V. As a result, when compared with the traditional quasi Z-source inverter, the proposed method has the advantage of the low voltage stress under the same output voltage condition of the voltage.

ISG 구동용 인버터의 열유동 해석에 관한 연구 (A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter)

  • 김대건;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Dual Vector Control Strategy for a Three-Stage Hybrid Cascaded Multilevel Inverter

  • Kadir, Mohamad N. Abdul;Mekhilef, Saad;Ping, Hew Wooi
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.155-164
    • /
    • 2010
  • This paper presents a voltage control algorithm for a hybrid multilevel inverter based on a staged-perception of the inverter voltage vector diagram. The algorithm is applied to control a three-stage eighteen-level hybrid inverter, which has been designed with a maximum number of symmetrical levels. The inverter has a two-level main stage built using a conventional six-switch inverter and medium- and low- voltage three-level stages constructed using cascaded H-bridge cells. The distinctive feature of the proposed algorithm is its ability to avoid the undesirable high switching frequency for high- and medium- voltage stages despite the fact that the inverter's dc sources voltages are selected to maximize the number of levels by state redundancy elimination. The high- and medium- voltage stages switching algorithms have been developed to assure fundamental switching frequency operation of the high voltage stage and not more than few times this frequency for the medium voltage stage. The low voltage stage is controlled using a SVPWM to achieve the reference voltage vector exactly and to set the order of the dominant harmonics. The inverter has been constructed and the control algorithm has been implemented. Test results show that the proposed algorithm achieves the desired features and all of the major hypotheses have been verified.

유도 가열용 Half-Bridge 인버터 시스템의 신뢰성 향상 및 최적제어에 관한 연구 (A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Beating System)

  • 유상봉
    • 기술사
    • /
    • 제33권1호
    • /
    • pp.94-105
    • /
    • 2000
  • The purpose of this paper is to obtain the improved reliability and optimal control of the half-bridge inverter for induction heating system. Parasitic inductance components within the inverter circuit for induction heating including the loss-less turn-off snubber capacitor considerably affect stable operation and noise level of the system. This paper analyzes the effect of the inductance in detail and presents a new snubber configuration suitable for the half-bridge inverter to effectively reduce it. In the half-bridge inverter for induction heating the capacity of the loss-less snubber capacitor determines the switching losses because the zero voltage turn-on switching is used. However, the increase of the capacitor is limited by the system specifications, so that it is not easy work to reduce the switching loss. To effectively overcome the limitation, this paper introduces an active auxiliary resonant circuit suitable for the half-bridge inverter circuit, which operates actively according to the variation of load condition. It is also one of the most important study issues for the half-bridge inverter driven induction heater that the development of optimal control scheme considering varied load condition should be achieved. The control strategy ensures a very stable operation of overall inverter system and zero voltage turn-on switching irrespective of sensitive load parameter variations, in particular, even under the non-magnetic materials.

  • PDF

공통암을 이용한 3상 변압기 절연 멀티레벨 인버터 (3-Phase Transformer Isolated Multi-level Inverter Using Common Arm)

  • 송성근;박성준;김동옥;임영철;김광헌
    • 전력전자학회논문지
    • /
    • 제12권2호
    • /
    • pp.149-156
    • /
    • 2007
  • 3상 변압기를 이용한 멀티레벨 인버터는 단상 변압기를 이용한 경우에 비해 변압기 수를 줄일 수 있으며, 변압기 이용률을 증대시켜 변압기 크기를 줄일 수 있다는 장점이 있으나 많은 수의 스위치 소자가 필요하다는 단점이 있다. 이에 본 논문에서는 공통암을 이용하여 스위치 수를 줄인 3상 변압기 절연 멀티레벨 인버터를 제안한다. 제안한 인버터는 스위칭 주파수를 기본주파수와 동일하게 제어하면서 등면적 법에 의해 도통각을 제어 하여 출력전압의 THD 감소 및 스위치 손실을 줄였다. 또한 Matlab을 이용한 시뮬레이션 및 실험을 통하여 제안된 방식의 타당성을 검증 하였다.

교류 전동기의 출력 토크 향상을 위한 인버터의 과변조 성능 개선 방법 (Method for Improving Overmodulation Performance of an Inverter for the Enhanced Output Torque of AC Motors)

  • 정혜인;김상훈
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.273-278
    • /
    • 2019
  • This study proposes a method for improving the overmodulation performance of a three-phase inverter to obtain an enhanced output torque for the AC motors. In the inverter-fed AC motor drives, the output torque of the motor can be enhanced by utilizing the overmodulation region as well as the linear modulation regions of the inverter. The overmodulation method is used for this overmodulation operation of the inverter. However, the voltage gain, the ratio of the output voltage of the inverter to the reference voltage achieved by the conventional overmodulation methods becomes nonlinearly smaller than unity. Therefore, the effect of improving the output torque of the AC motors is insignificant even when the overmodulation region is utilized. In this study, we propose a method that improves the overmodulation performance of the inverter by compensating the limited amount of the reference voltage in the overmodulation operation to enhance the output torque of the AC motors. The effectiveness of the proposed method is verified through the simulations and experiments with an 800 W permanent magnet synchronous motor.