• Title/Summary/Keyword: inversion algorithm

Search Result 293, Processing Time 0.024 seconds

A 3D Magnetic Inversion Software Based on Algebraic Reconstruction Technique and Assemblage of the 2D Forward Modeling and Inversion (대수적 재구성법과 2차원 수치모델링 및 역산 집합에 기반한 3차원 자력역산 소프트웨어)

  • Ko, Kwang-Beom;Jung, Sang-Won;Han, Kyeong-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, we developed the trial product on 3D magnetic inversion tentatively named 'KMag3D'. Also, we briefly introduced its own function and graphic user interface on which especially focused through the development in the form of user manual. KMag3D is consisted of two fundamental frame for the 3D magnetic inversion. First, algebraic reconstruction technique was selected as a 3D inversion algorithm instead of least square method conventionally used in various magnetic inversion. By comparison, it was turned out that algebraic reconstruction algorithm was more effective and economic than that of least squares in aspect of both computation time and memory. Second, for the effective determination of the 3D initial and a-priori information model required in the execution of our algorithm, we proposed the practical technique based on the assemblage of 2D forward modeling and inversion results for individual user-selected 2D profiles. And in succession, initial and a-priori information model were constructed by appropriate interpolation along the strke direction. From this, we concluded that our technique is both suitable and very practical for the application of 3D magentic inversion problem.

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Seismic Traveltime Tomography in Inhomogeneous Tilted Transversely Isotropic Media (불균질 횡등방성 매질에서의 탄성파 주시토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.229-240
    • /
    • 2007
  • In this study, seismic anisotropic tomography algorithm was developed for imaging the seismic velocity anisotropy of the subsurface. This algorithm includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudobeta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage. The algorithm of anisotropic tomography is verified through the numerical experiments. And, it is applied to the real field data measured at limestone region and the results are discussed with the drill log and geological survey data. The anisotropic tomography algorithm will be able to provide the useful tool to evaluate and understand the geological structure of the subsurface more reasonably with the anisotropic characteristics.

Extraction of Flow Velocity Information using Direct Wave and Application of Waveform Inversion Considering Flow Velocity (직접파를 이용한 배경매질 유속정보 도출과 유속을 고려한 파형역산의 적용)

  • Lee, Dawoon;Chung, Wookeen;Shin, Sungryul;Bae, Ho Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.199-206
    • /
    • 2017
  • Field data obtained from marine exploration are influenced by various environmental factors such as wind, waves, tidal current and flow velocity of a background medium. Most environmental factors except for the flow velocity are properly corrected in the data processing stage. In this study, the wave equation modeling considering flow velocity is used to generate observation data, and numerical experiments using the observation data were conducted to analyze the effect of flow velocity on waveform inversion. The numerical examples include the results with unrealistic flow velocities. In addition, an algorithm is suggested to numerically extract flow velocity for waveform inversion. The proposed algorithm was applied to the modified Marmousi2 model to obtain the results depending on the flow velocity. The effect of flow velocity on updated physical properties was verified by comparing the inversion results without considering flow velocity and those obtained from the proposed algorithm.

Laplace-domain Waveform Inversion using the Pseudo-Hessian of the Logarithmic Objective Function and the Levenberg-Marquardt Algorithm (로그 목적함수의 유사 헤시안을 이용한 라플라스 영역 파형 역산과 레벤버그-마쿼트 알고리듬)

  • Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2019
  • The logarithmic objective function used in waveform inversion minimizes the logarithmic differences between the observed and modeled data. Laplace-domain waveform inversions usually adopt the logarithmic objective function and the diagonal elements of the pseudo-Hessian for optimization. In this case, we apply the Levenberg-Marquardt algorithm to prevent the diagonal elements of the pseudo-Hessian from being zero or near-zero values. In this study, we analyzed the diagonal elements of the pseudo-Hessian of the logarithmic objective function and showed that there is no zero or near-zero value in the diagonal elements of the pseudo-Hessian for acoustic waveform inversion in the Laplace domain. Accordingly, we do not need to apply the Levenberg-Marquardt algorithm when we regularize the gradient direction using the pseudo-Hessian of the logarithmic objective function. Numerical examples using synthetic and field datasets demonstrate that we can obtain inversion results without applying the Levenberg-Marquardt method.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Revised Beamforming Inversion Method for Ocean Acoustic Tomography (해양음향 토모그래피를 위한 개선된 빔형성 역산 기법)

  • 오택환;오선택;나정열;유승기;김영신
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.645-651
    • /
    • 2003
  • This paper presents a revised beamforming inversion method for ocean acoustic tomography. In the proposed inversion method, the relation between group velocity and phase velocity that are the characteristics of the waveguide is used for the inversion of perturbed sound speed profile. The group velocity and phase velocity can be expressed as a function of the travel time and arrival angle of the received signals that are analyzed by the beamforming signal processing. This paper illustrates the simulated results of inversion for the fluctuated sound speed profile of the East Korea Sea and we found the applicability of revised beamforming inversion method to range independent ocean.

Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media (불균질 이방성 매질에서의 탄성파 주시 토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF

Application of 4-D resistivity imaging technique to visualize the migration of injected materials in subsurface (지하주입 물질 거동 규명을 위한 4차원 전기비저항 영상화)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.31-42
    • /
    • 2007
  • Dc resistivity monitoring has been increasingly used in order to understand the changes of subsurface conditions in terms of conductivity. The commonly adopted interpretation approach which separately inverts time-lapse data may generate inversion artifacts due to measurement error. Eventually the contaminated error amplifies the artifacts when reconstructing the difference images to quantitatively estimate the change of ground condition. In order to alleviate the problems, we defined the subsurface structure as four dimensional (4-D) space-time model and developed 4-D inversion algorithm which can calculate the reasonable subsurface structure continuously changing in time even when the material properties change during data measurements. In this paper, we discussed two case histories of resistivity monitoring to study the ground condition change when the properties of the subsurface material were artificially altered by injecting conductive materials into the ground: (1) dye tracer experiment to study the applicability of electrical resistivity tomography to monitoring of water movement in soil profile and (2) the evaluation of cement grouting performed to reinforce the ground. Through these two case histories, we demonstrated that the 4-D resistivity imaging technique is very powerful to precisely delineate the change of ground condition. Particularly owing to the 4-D inversion algorithm, we were able to reconstruct the history of the change of subsurface material property.

  • PDF