• Title/Summary/Keyword: inverse polynomial

Search Result 92, Processing Time 0.113 seconds

Ideal Freezing Curve Can Avoid the Damage by Latent Heat of Fusion During Freezing (냉동 시 잠재용융열에 의한 피해를 최소화할 수 있는 이상냉동 곡선)

  • 박한기;박영환;윤웅섭;김택수;윤치순;김시호;임상현;김종훈;곽영태
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Background:Liquid nitrogen freezing techniques have already met with widespread success in biology and medicine as a means of long-term storage for cells and tissues. The use of cryoprotectants such as glycerol and dimethylsulphoxide to prevent ice crystal formation, with carefully controlled rates of freezing and thawing, allows both structure and viability to be retained almost indefinitely. Cryopreservation of various tissues has various con-trolled rates of freezing. Material and Method: To find the optimal freezing curve and the chamber temperature, we approached the thermodynamic calculation of tissues in two ways. One is the direct calculation method. We should know the thermophysical characteristics of all components, latent heat of fusion, area, density and volume, etc. This kind of calculation is so sophisticated and some variables may not be determined. The other is the indirect calculation method. We performed the tissue freezing with already used freezing curve and we observed the actual freezing curve of that tissue. And we modified the freezing curve with several steps of calculation, polynomial regression analysis, time constant calculation, thermal response calculation and inverse calculation of chamber temperature. Result: We applied that freezing program on mesenchymal stem cell, chondrocyte, and osteoblast. The tissue temperature decreased according to the ideal freezing curve without temperature rising. We did not find any differences in survival. The reason is postulated to be that freezing material is too small and contains cellular components. We expect the significant difference in cellular viability if the freezing curve is applied on a large scale of tissues. Conclusion: This program would be helpful in finding the chamber temperature for the ideal freezing curie easily.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.