• 제목/요약/키워드: inverse dynamic model

검색결과 187건 처리시간 0.036초

건물냉방부하에 대한 동적 인버스 모델링기법의 EnergyPlus 건물모델 적용을 통한 성능평가 (Performance Evaluation of a Dynamic Inverse Model with EnergyPlus Model Simulation for Building Cooling Loads)

  • 이경호
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.

보행 중 하지 관절의 역동역학 해석 (An Inverse Dynamic Analysis of Lower Limbs During Gait)

  • 송성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.301-307
    • /
    • 2004
  • 보행 중 각 관절의 모멘트를 계산하기 위한 역동역학 모델을 개발하였다. 모델은 1개의 상체와 3개의 체절로 하지를 구성하였고 3개의 병진 조인트와 12개의 회전조인트로 각 체절을 연결하고 뉴턴-오일러 방법으로 역동역학 해를 구하였다. 입력자료로서의 기구학적 사료는 3차원 동작분석 시스템에서 추출하였고 외력으로서 지면 반발력은 동기화한 힘측정판에서 구했다. 개발된 모델을 이용하여 비대칭 모델이나 질량중심의 이동을 포함한 해석 등 다양한 인체운동 해석이 가능하다.

역동역학 뉴로제어기를 이용한 전력계통 안정화 장치 (Power System Stabilizer using Inverse Dynamic Neuro Controller)

  • 부창진;김문찬;김호찬;고희상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2188-2190
    • /
    • 2004
  • This paper presents an implementation of power system stabilizer using inverse dynamic neuro controller. Traditionally, mutilayer neural network is used for a universal approximator and applied to a system as a neuro-controller. In this case, at least two neural networks are used and continuous tuning of neuro-controller is required. Moreover, training of neural network is required considering all possible disturbances, which is impractical in real situation. In this paper, Taylor Model Based Inverse Dynamic Neuro Model (TMBIDNM) is introduced to avoid this problem. Inverse Dynamic Neuro Controller (IDNC) consists of TMBIDNM and Error Reduction Neuro Model (ERNM). Once the TMBIDNM is trained, it does not require retuning for cases with other types of disturbances. The controller is tested for one machine and infinite-bus power system for various operating conditions.

  • PDF

수동 휠체어 추진 중 상지 역동역학 모델 (An Inverse Dynamic Model of Upper Limbs during Manual Wheelchair Propulsion)

  • 송성재
    • 재활복지공학회논문지
    • /
    • 제7권1호
    • /
    • pp.21-27
    • /
    • 2013
  • 수동 휠체어의 추진은 추진 동작의 낮은 효율로 인하여 사용자의 상지 관절에 고통과 부상까지 유발할 수 있다. 이에 따라 수동 휠체어 추진 중에 발생하는 상지 관절의 운동역학적 해석이 필요하다. 본 연구에서는 수동 휠체어 추진 중 상지 관절에 작용하는 토크를 구할 수 있는 2차원 역동역학 모델을 개발하였다. 개발한 모델은 시상면에서 상완, 하완, 손에 해당하는 3개의 체절로 상지를 구성하였고 몸통으로부터 3개의 체절을 회전조인트로 연결한 개방연쇄구조를 갖는다. 역동역학 해는 뉴턴-오일러 방법으로 구하였고 요구되는 입력자료는 실험을 통하여 획득하였다. 수동 휠체어 추진에 필요한 상지 거동의 운동학적 자료는 3차원 동작분석 시스템에서 추출하였고 역동역학 모델의 외력에 해당하는 운동역학적 자료는 브레이크식 다이나모미터에서 추출하였다. 역동역학 모델을 이용한 해석을 통하여 수동 휠체어 추진에 따른 상지 관절의 회전각과 관절 토크를 구하였다. 개발된 모델은 상지 관절에 관한 생체역학적 해석 도구이며 적은 노력으로 3차원 역동역학 모델로 확장하는 토대가 된다.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

역동력학을 이용한 DC 모터의 속도제어 (Spped Control of DC Motors Using Inverse Dynamics)

  • 강원룡
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.6-10
    • /
    • 2000
  • In this paper a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a low-pass prefilter the inverse dynamic model of a system and the PI controller. The low-pass prefilter prevents high frequency effects from the inverse dynamic model. The model is characterized by a nonlinear friction model. The PI controller regulates the error between the set-point and the system output which is caused by modeling error disturbances and variations f parameters. The parameters of the model and the PI controller are optimized offlinely by genetic algorithm. The experimental results on a DC motor system illustrate the performance of the proposed controller.

Development of Inverse Dynamic Controller for Industrial robots with HyRoHILS system

  • Yeon, Je-Sung;Kim, Eui-Jin;Lee, Sang-Hun;Park, Jong-Hyeon;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1972-1977
    • /
    • 2005
  • In this work, an inverse dynamic control method is developed to enhance tracking performance of industrial robots, which effectively deal with the nonlinear dynamic interferential forces. In general, the DFF (Dynamic Feed-Forward) controller and the CTM (Computed-Torque Method) controller are used for dynamic control for industrial robots. We study on the practical issues for implementing these inverse dynamic controllers via simulations and experiments. We develop the dynamic models in two different ways. One is a model designed through Newton-Euler method for real time computation and the other is a model designed through SimMechanics for evaluating the developed controller via simulations. We evaluate the nominal performance and robustness of the controller via simulations and experiments using serial 4-DOF HyRoHILS (Hyundai Robot Hardware-In-the-Loop Simulation) system. The results show that the inverse dynamic controller is effective and practically useful for a real control structure.

  • PDF

역동력학을 이용한 DC 모터의 속도제어 (Speed Control of DC Motors Using Inverse Dynamics)

  • 김병만;손영득;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.97-102
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and the PI controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system in characterized by a nonlinear equation with coulomb friction. The PI controller regulates the error between the set-point and the system output which may be caused by modeling error, variations of parameters and disturbances. The output which may be caused by modeling error, variations of parameters and disturbances. The parameters of the model and the PI controller are adjusted offlinely by a genetic algorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller.

  • PDF

역동력학과 퍼지기법을 이용한 DC 모터의 속도제어 (DC Motor Speed Control Using Inverse Dynamics and the Fuzzy Technique)

  • 김병만;유성호;박승수;김종화;진강규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.138-138
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and a fuzzy logic controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system is characterized by a nonlinear equation with coulomb friction. The fuzzy logic controller regulates the error between the set-point and the system output which may be caused by disturbances and it simultaneously traces the change o( the reference input. The parameters of the model are estimated by a genetic a]gorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller

  • PDF

역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구 (A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model)

  • 김형섭;한지훈;최동진;홍선기
    • 전기학회논문지
    • /
    • 제68권2호
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.