• Title/Summary/Keyword: inverse analysis scheme

Search Result 75, Processing Time 0.022 seconds

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

A Study on the Optimal Position for the Secondary Neutron Source in Pressurized Water Reactors

  • Sun, Jungwon;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1291-1302
    • /
    • 2016
  • This paper presents a new and efficient scheme to determine the optimal neutron source position in a model near-equilibrium pressurized water reactor, which is based on the OPR1000 Hanul Unit 3 Cycle 7 configuration. The proposed scheme particularly assigns importance of source positions according to the local adjoint flux distribution. In this research, detailed pin-by-pin reactor adjoint fluxes are determined by using the Monte Carlo KENO-VI code from solutions of the reactor homogeneous critical adjoint transport equations. The adjoint fluxes at each allowable source position are subsequently ranked to yield four candidate positions with the four highest adjoint fluxes. The study next simulates ex-core detector responses using the Monte Carlo MAVRIC code by assuming a neutron source is installed in one of the four candidate positions. The calculation is repeated for all positions. These detector responses are later converted into an inverse count rate ratio curve for each candidate source position. The study confirms that the optimal source position is the one with very high adjoint fluxes and detector responses, which is interestingly the original source position in the OPR1000 core, as it yields an inverse count rate ratio curve closest to the traditional 1/M line. The current work also clearly demonstrates that the proposed adjoint flux-based approach can be used to efficiently determine the optimal geometry for a neutron source and a detector in a modern pressurized water reactor core.

The Safety Assessment of the Connecting Cable in Deep Water Unmanned Underwater Vehicle (심해 잠수정 연결케이블의 안전성 평가에 관한 연구)

  • Nho, In-Sik;Choi, Byoung-Gy;Lee, Jong-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, the dynamic response of the umbilical cable in a deep-water unmanned underwater vehicle system was analyzed. In order to analyze the forces acting on the cable, the launcher and umbilical cable were modeled by the simple 1-D mass-spring system. Damping and dynamic analysis was carried out by a direct time integration scheme using the $Newmark-{\beta}$ method with inverse iteration procedure, considering the nonlinear drag forces acting on the launcher. The obtained results of the present study can be used for the design of connecting the structure of the launcher and cable of the UUV system.

A 2-D Barcode Detection Algorithm based on Local Binary Patterns (지역적 이진패턴을 이용한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • To increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, a new 2D barcode detection algorithm based on Local Binary Pattern is presented. To locate 2D barcode symbols, a texture analysis scheme based on the Local Binary Pattern is adopted, and a gray-scale projection with sub-pixel operation is utilized to separate the symbol precisely from the input image. Finally, the segmented symbol is normalized using the inverse perspective transformation for the decoding process. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments show that our method is very robust and efficient in detecting the symbol area for the various types of 2D barcodes.

  • PDF

DCT and DWT Based Robust Audio Watermarking Scheme for Copyright Protection

  • Deb, Kaushik;Rahman, Md. Ashikur;Sultana, Kazi Zakia;Sarker, Md. Iqbal Hasan;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Digital watermarking techniques are attracting attention as a proper solution to protect copyright for multimedia data. This paper proposes a new audio watermarking method based on Discrete Cosine Transformation (DCT) and Discrete Wavelet Transformation (DWT) for copyright protection. In our proposed watermarking method, the original audio is transformed into DCT domain and divided into two parts. Synchronization code is applied on the signal in first part and 2 levels DWT domain is applied on the signal in second part. The absolute value of DWT coefficient is divided into arbitrary number of segments and calculates the energy of each segment and middle peak. Watermarks are then embedded into each middle peak. Watermarks are extracted by performing the inverse operation of watermark embedding process. Experimental results show that the hidden watermark data is robust to re-sampling, low-pass filtering, re-quantization, MP3 compression, cropping, echo addition, delay, and pitch shifting, amplitude change. Performance analysis of the proposed scheme shows low error probability rates.

Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils (릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링)

  • Park, Hee-Su;Kwon, Min-Sung;Kim, Min-Ji;Park, Hyeon-Min;Ku, Hyun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.

Influencer Attribute Analysis based Recommendation System (인플루언서 속성 분석 기반 추천 시스템)

  • Park, JeongReun;Park, Jiwon;Kim, Minwoo;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1321-1329
    • /
    • 2019
  • With the development of social information networks, the marketing methods are also changing in various ways. Unlike successful marketing methods based on existing celebrities and financial support, Influencer-based marketing is a big trend and very famous. In this paper, we first extract influencer features from more than 54 YouTube channels using the multi-dimensional qualitative analysis based on the meta information and comment data analysis of YouTube, model representative themes to maximize a personalized video satisfaction. Plus, the purpose of this study is to provide supplementary means for the successful promotion and marketing by creating and distributing videos of new items by referring to the existing Influencer features. For that we assume all comments of various videos for each channel as each document, TF-IDF (Term Frequency and Inverse Document Frequency) and LDA (Latent Dirichlet Allocation) algorithms are applied to maximize performance of the proposed scheme. Based on the performance evaluation, we proved the proposed scheme is better than other schemes.