• Title/Summary/Keyword: inventory/ production

Search Result 432, Processing Time 0.026 seconds

Estimating Carbon Fixation of 14 Crops in Korea (우리나라 주요 작물의 탄소 고정량 산출)

  • Kim, Gun-Yeob;Ko, Byong-Gu;Jeong, Hyun-Cheol;Roh, Kee-An;Shim, Kyo-Moon;Lee, Jeong-Taek;Lee, Deog-Bae;Hong, Suk-Young;Kwon, Soon-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.460-466
    • /
    • 2009
  • Carbon fixation and density of crops are important to estimate carbon uptake or emission by agricultural production activities and to establish life cycle inventory of crops for assessment of climate change impact. In this study, regional carbon fixation and density in each part of 14 crops, harvest index, and ratio of aboveground to underground were investigated to estimate biomass of 14 crops in Korea by using agricultural statistics data. Biomass yield of potato was $16.5ton\;ha^{-1}$, which was the highest, and those of rice, sweet potato, and garlic were $10.5ton\;ha^{-1}$, $8.7ton\;ha^{-1}$, and $7.5ton\;ha^{-1}$ respectively. Biomass yield of Green onion was the lowest as $2.8ton\;ha^{-1}$. Carbon density of 14 crops were in the order of potato ($6.4ton\;ha^{-1}$), rice ($4.2ton\;ha^{-1}$), sweet potato ($3.4ton\;ha^{-1}$), rape ($2.9ton\;ha^{-1}$) and garlic ($2.8ton\;ha^{-1}$). Regional distribution of carbon contents for each crop mapped revealed that carbon fixation of rice, soybean, sesame, garlic, and green onion were the highest in Jeonnam province, barley, red pepper, and watermelon in Gyeongnam, perilla in Chungnam, peanut in Gyeongbuk, rape and carrot in Jeju, sweet potato in Gyeonggi, potato in Gangwon. The results can be applied for assessing life cycle inventory of crops and crop productivity using remotely sensed data.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

Carbon Uptake and Emissions of Apple Orchards as a Production-type Greenspace (생산형 녹지 중 사과나무 과수원의 탄소흡수 및 배출)

  • Jo, Hyun-Kil;Park, Sung-Min;Kim, Jin-Young;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.64-72
    • /
    • 2014
  • This study quantified the storage and annual uptake of carbon by apple trees in orchards as a production-type greenspace, and computed the annual carbon emissions from apple cultivation. Tree individuals in the study orchards were sampled to include the range of stem diameter sizes. The study measured biomass for each part including the roots of sample trees through a direct harvesting method to compute total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing the radial growth rates of stem samples at ground level. Annual carbon emissions from management practices such as pruning, mowing, irrigation, fertilization, and use of pesticides and fungicides were estimated based on maintenance data, interviews with managers, and actual measurements. Regression models were developed using stem diameter at ground level (D) as an independent variable to easily estimate storage and annual uptake of the carbon. Storage and annual uptake of carbon per tree increased as D sizes got larger. Apple trees with D sizes of 10 and 15 cm stored 9.1 and 21.0 kg of carbon and annually sequestered 1.0 and 1.6 kg, respectively. Storage and annual uptake of carbon per unit area in study orchards were 3.81 t/ha and 0.42 t/ha/yr, respectively, and annual carbon emissions were 1.30 t/ha/yr. Thus, the carbon emissions were about 3 times greater than the annual carbon uptake. The study identified management practices to reduce the carbon footprint of production-type greenspace, including efficient uses of water, pesticides, fungicides, and fertilizers. It breaks new ground by including measured biomass of roots and a detailed inventory of carbon emissions.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea

  • Ji, Eun-Sook;Park, Kyu-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1768-1774
    • /
    • 2012
  • This study was conducted to evaluate methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric $CH_4$ emissions and $CH_4$ and $N_2O$ emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average $CH_4$ emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average $CH_4$ emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average $N_2O$ emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average $CH_4$ emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions ($CO_2$-Eq), forecasted average $CO_2$-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average $CH_4$ emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased $CO_2$-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric $CH_4$ emissions, $CH_4$ and $N_2O$ emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total $CO_2$-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data.

A Study on Construction of Optimal Wireless Sensor System for Enhancing Organization Security Level on Industry Convergence Environment (산업융합환경에서 조직의 보안성 향상을 위한 센싱시스템 구축 연구)

  • Na, Onechul;Lee, Hyojik;Sung, Soyoung;Chang, Hangbae
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.139-146
    • /
    • 2015
  • WSN has been utilized in various directions from basic infrastructure of environment composition to business models including corporate inventory, production and distribution management. However, as energy organizations' private information, which should be protected safely, has been integrated with ICT such as WSN to be informatization, it is placed at potential risk of leaking out with ease. Accordingly, it is time to need secure sensor node deployment strategies for stable enterprise business. Establishment of fragmentary security enhancement strategies without considering energy organizations' security status has a great effect on energy organizations' business sustainability in the event of a security accident. However, most of the existing security level evaluation models for diagnosing energy organizations' security use technology-centered measurement methods, and there are very insufficient studies on managerial and environmental factors. Therefore, this study would like to diagnose energy organizations' security and to look into how to accordingly establish strategies for planning secure sensor node deployment strategies.

Free congregate site meal service systems for elderly at urban area (도시지역 노인을 위한 무료 급식시설의 급식 서어비스 현황조사)

  • Lee, Young-Mee;Lee, Ki-Wan;Myung, Choon-Ok;Park, Young-Sim;Nam, Hae-Won
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.4
    • /
    • pp.431-446
    • /
    • 1999
  • The purpose of this study is to examine current foodservice management practices at free congregate meal service for elderly people. Forty seven meal service centers as well as randomly selected Seoul and Kyunggido area were surveyed and interviewed and results were summarized as follows: The cost of each meal(lunch) was ranged from 1,300 won to 1,500 won and 68% of target centers were severed over 100 meals per day. Meal time for lunch begins from 10:30 am to 12:00 because great portion of elderly didn't take breakfast frequently. 52.3% of centers severed meal 5 times per week, just weekdays. 21.3% of centers employeed dietitian, 63.8% of center employeed cook. 95.7% of center were supported labor force by volunteers. Volunteer was important contribution to free meal service. Utilizing the labor force more effectively is thus a major challenge facing manager in each center. Ideal supporting system of free foodstuff, foodbank was still minor source of securing foodstuff. Most of centers(46 centers)served lunch, only one of them served breakfast and lunch. Government was the major financial sponsor, the second of them was religious organization. The large portions of financial support provided only food cost of total meal service budget. Most of center adapted self-service system. Standardized recipes were not developed and meal preparation was controlled under the experience of volunteers. Recording system of nutrition management, production control, storage and inventory control was not adapted by most of sites. It is suggested that in order to meet the change of the patterns of social and family structure, the service of the center should be offended in urban area and it is necessary to develop systematic management models for the center. It was suggested that not only financial support but also systematical support on management by the local government may be necessary to meet the goal of supply nutritionally balanced food at center.

  • PDF

The Estimation of PM2.5 Emissions and Their Contribution Analysis by Source Categories in Korea (국내 배출원별 PM2.5 배출량 산정 및 배출 기여도 분석)

  • Jin, Hyung-Ah;Lee, Ju-Hyoung;Lee, Kyung-Mi;Lee, Hyang-Kyeong;Kim, Bo-Eun;Lee, Dong-Won;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • The Ministry of Environment will enforce air quality standards for $PM_{2.5}$ in 2015 because it affects human health as well as climate change and brings about other adverse effects. Until recently, even though a number of researches have reported $PM_{2.5}$ emissions according to sources, they have not precisely considered the emission factors correspondent to each source for emission estimation. For the sake of establishing $PM_{2.5}$ emission inventories, this study was undertaken using activity data of each source taken from CAPSS (Clean Air Policy Support System) multiplied by each emission factor of U.S. EPA Speciate or EEA CORINAIR. The 2008's total annual $PM_{2.5}$ emission (73.971 ton/yr) can be apportioned into five sources, such as fuel combustion facilities (62.2%), mobiles (33.8%), production processes (3.2%), fires (0.4%), and waste treatments (0.3%). The results show that fuel combustion facilities and mobiles are the predominant sources of $PM_{2.5}$, and they should be taken into great account in establishing $PM_{2.5}$ standards. In addition, it is necessary and urgent to develop effective measures for reduction of $PM_{2.5}$ emissions from those two main sources as well.

A study on the Efficient Improvement of Meal cost Management in Elementary School Foodservice - A comparison of commissary with conventional school foodservice systems - (학교급식비 관리의 효율적 개선을 위한 연구 - 공동조리 및 단독조리 급식학교의 비교 -)

  • Choe, Eun-Hui;Lee, Jin-Mi;Gwak, Dong-Gyeong
    • Journal of the Korean Dietetic Association
    • /
    • v.1 no.1
    • /
    • pp.54-65
    • /
    • 1995
  • Commissary school foodservice system has been expanded rapidly in elementary foodservices in Korea. Therefore, it is essential that cost effectiveness should be assessed by comparing between alternative systems. The objectives of this study were to assess the effects on meal costs of foodservice systems and other school characteristics in terms of meal costs/day per 1 person ; to examine financial management practices and dietitians' perception concerning importance of school foodservices financial management. A total of 16 commissary schools in nationwide and 102 conventional schools at Chungnam province and Seoul were participated in this survey by mails. The results are as follows 1. Average meal costs per one person was 1,232.6 won evaluated on the standards of monthly budget basis on June, 1994. Average food costs per one person was 836.1 won(67.83%), average labor cost was 320.1 won(25.97 %) and operation costs was 76.3 won(6.2 %). 2. Average meal costs per one person did not show any significant difference between commissary and conventional foodservice schools. Meal costs of the island type and the rural type were significantly higher than those of the urban type. Meal costs of schools in Chungnam and other province were higher than schools in Seoul. The schools with less than 200 feeding numbers were higher than the schools more than 201 in meal costs per one person. 3. Food costs per one person were higher in the urban type, especially in Seoul, as the scale of feeding number increased. Labor costs and operational costs were increased in island type as well as in the schools of small feeding numbers. 4. Foodservice teachers, not dietitians were in charge of foodservice duties at the 75 % of satellites. Dietitians participated in the satellite foodservice duties were only averaged at 2.19 visits per month of 20 feeding days. 5. Items which influenced by food costs per person at the step of foodservice production were purchasing method, the perception of inventory, the distributor for foodservice, and usage of standardized recipes.

  • PDF