• Title/Summary/Keyword: invasion plant

Search Result 137, Processing Time 0.034 seconds

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim;Su Hui Seong;Tae-Su Kim;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jung Up Park;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Distribution Pattern of White Snakeroot as an Invasive Alien Plant and Restoration Strategy to Inhibit Its Expansion in Seoripool Park, Seoul

  • Lee, Han-Sol;Yoo, Hae-Mi;Lee, Chang-Seok
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.197-205
    • /
    • 2003
  • White snakeroot (Ageratina altissima (L.) R. King & H. Robinson) as an invasive alien plant appeared more abundantly at lower elevations where frequent artificial interferences prevailed than at higher elevations where such impacts were less. They appeared abundantly in introduced forests such as black locust plantation but they did not appear or were rare in natural forests such as oak forest. But an exceptional phenomenon where white snakeroot did not appear was found in a Korean pine stand with dense cover afforested recently. Appearance status of white snakeroot in each section of trampling path depended on breadth of the path and relative light intensity. Growth of white snakeroot measured as the number of ramet per genet, height, and biomass was better near the trampling path and was reduced toward the forest interior. The growth was proportionate to the relative light intensity measured according to distance from the trampling path. Such results support the fact generally known in relation invasion and expansion of the invasive alien plants. From this viewpoint, we suggest a management plan that applies ecological restoration principles to address ecosystems infected with white snakeroot by restoring the integral feature of the degraded nature and more thoroughly conserving the remaining nature.

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Vegetation Structure and Distribution of Exotic Plants with Geomorphology and Disturbance in the Riparian Zone of Seunggi Stream, Incheon (인천 승기천의 하안지대에서 지형과 교란에 따른 외래식물의 분포와 식생 구조)

  • Sin, Dong-Ho;Jo, Gang-Hyeon
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.273-280
    • /
    • 2001
  • We investigated the flora and vegetation structure of exotic plants along stream geomorphology and disturbance factors in the riparian zone of Seunggi stream, Incheon. Total 53 exotic plant species were found in the riparian corridors of Seunggi stream. The percentage of exotics ranged from 25% to 33% of total species richness, and its mean value was 24% in the whole riparian area. The percentage of exotics reflected the vulnerability of riparian zones to plant invasions by disturbances, and it could be used as an indicator of riparian system dysfunction. The distinct distribution patterns of exotic plants did not found in the lateral topographic features of the stream. Invasion and proliferation of the exotic plants were somewhat remarkable at terraces and bank slopes of the stream. Among various disturbance factors, plowing and trampling were important on the invasion of exotic plant species of Seunggi stream.

  • PDF

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

From Recognition to Defense Responses in Rice Plant

  • Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • When plants are infected by plant pathogens, rapid cell responses are initiated for further inhibition from fast invasion of pathogens. Hypersensitive response (HR) of plant is well known defense response stopping pathogenesis process through rapid cell death. However, informations on the signaling pathway from reception of pathogen by host plants to appropriate resistant responses are very limited to date. Efficient perception of infection by pathogens and well-programmed signalling mechanism for appropriate responses are important for survival of plants. Plant have developed a sophisticated network(s) of defense/stress responses, among which one of the earliest signalling pathways after perception (of stimuli) is the evolutionary conserved Rop GTPase and mitogen-activated protein kinase (MAPK) cascade.(중략)

  • PDF

Enhancing Resistance of Red Pepper to Phytophthora Blight Diseases by Seed Treatment with Plant Growth Promoting Rhizobacteria

  • M. Rajkumar;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Plant growth promoting rhizobacteria (PGPR) have been shown to suppress phytopthora blight. This suppression has been related to both microbial antagonism and induced resistance. The PGPR isolates were screened by dual culture plate method and most of the isolates were showed varying levels of antagonism. Among the PGPR isolates pyoverdin, pyochelin and salicylic acid producing strains showed the maximum inhibition of mycelial growth of Phytopkhora capsici and increased plant growth promotion in red pepper. PGPR isolates further analysed for its ability to induce production of defence related enzymes and chemicals. The activities such as Phenyle alanin ammonia Iyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and accumulation of phenolics were observed in PGPR pretreated red pepper plants challenged with Phytopkhora capsici. The present study shows that an addition of direct antagonism and plant growth promotion, induction of defense related enzymes involved to enhance resistance against invasion of P. capsici in red pepper.

  • PDF

Cordycepin Inhibits LPS-induced Cell Migration and Invasion in Human Colorectal Carcinoma HCT116 cells through Down-regulation of Prostaglandin E2-EP4 Receptor (LPS 유도된 HCT116 인간 대장암세포에서 cordycepin의 prostaglandin E2-EP4 receptor 감소 조절을 통한 세포의 이동과 전이 억제 효과)

  • Jung Eun Kim;Bo-Ram Kim;Su Hui Seong;Jin-Ho Kim;Ha-Nul Lee;Chan Seo;Ji Min Jung;Su A Im;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.50-50
    • /
    • 2023
  • Prostaglandin E2(PGE2), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because PGE2 functions by signaling through PGE2 receptors (Eps), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting Eps. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibititing the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinases (MMP)-9 as well as the down-regulation of COX-2 expression and PGE2 production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells. Through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

  • PDF