• 제목/요약/키워드: invasion mechanisms

검색결과 153건 처리시간 0.026초

Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii

  • Song, Hyun-Ouk;Ahn, Myoung-Hee;Ryu, Jae-Sook;Min, Duk-Young;Joo, Kyoung-Hwan;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제42권4호
    • /
    • pp.185-193
    • /
    • 2004
  • Toxoplasma gondii is an obligate intracellular protozoan parasite, which invades a wide range of hosts including humans. The exact mechanisms involved in its invasion are not fully understood. This study focused on the roles of $Ca^{2+}$ in host cell invasion and in T. gondii replication. We examined the invasion and replication of T. gondii pretreated with several calcium modulators, the conoid extrusion of tachyzoites. Calmodulin localization in T. gondii were observed using the immunogold method, and $Ca^{2+}$ levels in tachyzoites by confocal microscopy. In light microscopic observation, tachyzoites co-treated with A23187 and EGTA showed that host cell invasion and intracellular replication were decreased. The invasion of tachyzoites was slightly inhibited by the $Ca^{2+}$ channel blockers, bepridil and verapamil, and by the calmodulin antagonist, calmidazolium. We observed that calcium saline containing A23187 induced the extrusion of tachyzoite conoid. By immunoelectron microscopy, gold particles bound to anti-calmodulin or anti-actin mAb, were found to be localized on the anterior portion of tachyzoites. Remarkably reduced intracellular $Ca^{2+}$ was observed in tachyzoites treated with BAPTA/AM by confocal microscopy. These results suggest that host cell invasion and the intracellular replication of T. gondii tachyzoites are inhibited by the calcium ionophore, A23187, and by the extracellular calcium chelator, EGTA.

MicroRNA-21 Regulates the Invasion and Metastasis in Cholangiocarcinoma and May Be a Potential Biomarker for Cancer Prognosis

  • Huang, Qiang;Liu, Lei;Liu, Chen-Hai;You, Hao;Shao, Feng;Xie, Fang;Lin, Xian-Sheng;Hu, San-Yuan;Zhang, Chuan-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.829-834
    • /
    • 2013
  • Background: MicroRNAs are noncoding RNA molecules that posttranscriptionally regulate gene expression. The aim of this study was to determine the role of microRNA-21 in cholangiocarcinomas and its relationship to cholangiocarcinoma RBE cell capacity for invasion and metastasis. Methods: MicroRNA-21 expression was investigated in 41 cases of cholangiocarcinoma samples by in situ hybridization and real-time PCR. Influence on cholangiocarcinoma cell line invasion and metastasis was analyzed with microRNA-21 transfected cells. In addition, regulation of reversion-inducing-cysteine-rich protein with kazal motifs (RECK) by microRNA-21 was elucidated to identify mechanisms. Results: In situ hybridization and real-time quantitative PCR results for patients with lymph node metastasis or perineural invasion showed significantly high expression of microRNA-21 (P<0.05). There was a dramatic decrease in cholangiocarcinoma cell line invasion and metastasis ability after microRNA-21 knockdown (P<0.05). However, overexpression significantly increased invasion and metastasis (P<0.05). Real-time PCR and Western-blot analysis showed that microRNA-21 could potentially inhibit RECK expression in RBE cells. Survival analysis showed that patients with higher expression levels of microRNA-21 more often had a poor prognosis (P<0.05). Conclusions: MicroRNA-21 may play an important role in cholangiocarcinoma invasion and metastasis, suggesting that MicroRNA-21 should be further evaluated as a biomarker for predicting cholangiocarcinoma prognosis.

Membrane Proteins Involved in Epithelial-Mesenchymal Transition and Tumor Invasion: Studies on TMPRSS4 and TM4SF5

  • Kim, Semi;Lee, Jung Weon
    • Genomics & Informatics
    • /
    • 제12권1호
    • /
    • pp.12-20
    • /
    • 2014
  • The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks that induce the EMT and cancer progression.

Effect of STAT3 on Lysophosphatidic Acid-Induced Oral Cancer Cell Invasion

  • Song, Zi Hae;Cho, Kyung Hwa;Kim, Jin Young;Lee, Hoi Young
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.141-146
    • /
    • 2019
  • Background: Oral cancer has a high incidence worldwide and has been closely associated with smoking, alcohol, and infection by the human papillomavirus. Metastasis is highly important for oral cancer survival. Lysophosphatidic acid (LPA) is a bioactive lipid mediator that promotes various cellular processes, including cell survival, proliferation, metastasis, and invasion. Signal transducer and activator of transcription (STATs) are transcription factors that mediate gene expression. Among the seven types of STATs in mammals, STAT3 is involved in invasion and metastasis of numerous tumors. However, little is known about the role of STAT3 in oral tumor invasion. In the present study, we hypothesized that STAT3 mediates LPA-induced oral cancer invasion. Methods: Immunoblotting was performed to analyze LPA-induced STAT3 activation. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed to assess the survival rates of YD-10B cells. STAT3 levels in LPA-treated oral tumor cells were evaluated by performing in vitro invasion assay. Results: To the best of our knowledge, this is the first study to demonstrate that LPA enhances STAT3 phosphorylation in oral cancer. In addition, treatment with WP1066, a selective inhibitor of STAT3, at a concentration that does not cause severe reduction in cell viability, significantly attenuated LPA-induced YD-10B cancer cell invasion. Conclusion: The results suggested that LPA induces oral tumor cells with greater invasive potential via STAT3 activation. Our findings provided important insights into the mechanisms underlying mouth neoplasms.

S100A14 Promotes the Growth and Metastasis of Hepatocellular Carcinoma

  • Zhao, Fu-Tao;Jia, Zhan-Sheng;Yang, Qun;Song, Le;Jiang, Xiao-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3831-3836
    • /
    • 2013
  • Background: S100A14 has recently been implicated in the progress of several types of cancers. This study aimed to investigate the clinical significance and possible mechanisms of action of S100A14 in the invasion and metastasis of hepatocellular carcinoma (HCC). Methods: S100A14 expression in HCC was detected at mRNA and protein levels and its prognostic significance was assessed. Functional roles of S100A14 in HCC were investigated using MTT, BrdU, wound healing, transwell invasion assay and HCC metastatic mouse model. Results: S100A14 was significantly elevated in HCC tissues, correlated with multiple tumor nodes, high Edmondson-Steiner grade and vascular invasion. Multivariate Cox analysis showed that the S100A14 expression level was a significant and independent prognostic factor for overall survival (OS) of HCC patients (hazard ratio=1.98, 95% confidence interval=1.14-3.46, P=0.013). S100A14 promoted cell proliferation, invasion and metastasis of HCC in vitro and in vivo. Conclusion: These results suggest S100A14 is a novel prognostic marker and therapeutic target for HCC.

miR-124 Inhibits Growth and Invasion of Gastric Cancer by Targeting ROCK1

  • Hu, Cong-Bing;Li, Qiao-Lin;Hu, Jian-Fei;Zhang, Qiang;Xie, Jian-Ping;Deng, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6543-6546
    • /
    • 2014
  • MicroRNAs (miRNAs) act as critical regulators of genes involved in many biological processes. Aberrant alteration of miRNAs have been found in many cancers, including gastric cancer (GC), but the molecular mechanisms are not well understood. Herein, we investigated the role of miR-124 in GC. We found that its expression was significantly reduced in both GC tissue samples and cell lines. Forced expression of miR-124 suppressed GC cell proliferation, migration, and invasion. Furthermore, the Rho-associated protein kinase (ROCK1) was identified as a direct target of miR-124 in GC cells. Finally, silencing of ROCK1 showed similar effects as miR-124 overexpression, while supplementation of ROCK1 remarkably restored the cell growth and invasion inhibited by miR-124. Together, our data demonstrate that miR-124 acts as a tumor suppressor by targeting ROCK1, and posit miR-124 as a novel strategy for GC treatment.

Prognostic Significance of Hes-1, a Downstream Target of Notch Signaling in Hepatocellular Carcinoma

  • Zou, Jing-Huai;Xue, Tong-Chun;Sun, Chun;Li, Yan;Liu, Bin-Bin;Sun, Rui-Xia;Chen, Jie;Ren, Zheng-Gang;Ye, Sheng-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3811-3816
    • /
    • 2015
  • Background: Hairy and enhancer of split 1 (Hes-1) protein is a downstream target of Notch signaling and is a basic helix-loop-helix transcriptional repressor. However, definitive evidence for a role in hepatocellular carcinoma (HCC) cells has not been reported. Here, Hes-1 was revealed to an important component of the Notch signaling cascade in HCC cell lines possessing different potential for lung metastasis. Materials and Methods: RNAi mediated by plasmid constructs was used to analyze the role of Hes-1 in MHCC-97L HCC cells by assessing proliferation, apoptosis, cell migration and matrigel invasion following transfection. Hes-1 protein expression analysis in HCC tissue was also conducted by immunohistochemistry. Results: Our studies revealed that Hes-1 was decreased in HCC cell lines with higher lung metastasis potential at both the mRNA and protein levels. Down-regulation of the Hes-1 gene in MHCC-97L cells resulted in increased cell proliferation, reduced apoptosis and increased migration and invasion. Conclusions: Hes-1 has potential prognostic value in post-surgical HCC patients and may be an independent prognostic indicator for overall survival and tumor recurrence. These findings have important implications for understanding the mechanisms by which Hes-1 participates in tumor proliferation and invasion.

Ellagic Acid Inhibits Migration and Invasion by Prostate Cancer Cell Lines

  • Pitchakarn, Pornsiri;Chewonarin, Teera;Ogawa, Kumiko;Suzuki, Shugo;Asamoto, Makoto;Takahashi, Satoru;Shirai, Tomoyuki;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2859-2863
    • /
    • 2013
  • Polyphenolic compounds from pomegranate fruit extracts (PFEs) have been reported to possess antiproliferative, pro-apoptotic, anti-inflammatory and anti-invasion effects in prostate and other cancers. However, the mechanisms responsible for the inhibition of cancer invasion remain to be clarified. In the present study, we investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. The EA treatment slightly decreased secretion of matrix metalloproteinase (MMP)-2 but not MMP-9 from both cell lines. We further found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

The role of autophagy in the placenta as a regulator of cell death

  • Gong, Jin-Sung;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.97-107
    • /
    • 2014
  • The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.