• Title/Summary/Keyword: invariant dense subset

Search Result 2, Processing Time 0.014 seconds

ON THE DENSITY OF VARIOUS SHADOWING PROPERTIES

  • Koo, Namjip;Tsegmid, Nyamdavaa
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.981-989
    • /
    • 2019
  • In this paper we deal with some shadowing properties of discrete dynamical systems on a compact metric space via the density of subdynamical systems. Let $f:X{\rightarrow}X$ be a continuous map of a compact metric space X and A be an f-invariant dense subspace of X. We show that if $f{\mid}_A:A{\rightarrow}A$ has the periodic shadowing property, then f has the periodic shadowing property. Also, we show that f has the finite average shadowing property if and only if $f{\mid}_A$ has the finite average shadowing property.

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Petersson, Henrik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.903-921
    • /
    • 2008
  • A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.