• Title/Summary/Keyword: inundation probability

Search Result 26, Processing Time 0.023 seconds

Estimating Worst Case Flood and Inundation Damages under Climate Change

  • Kim, Sunmin;Tachikawa, Yasuto;Nakakita, Eiichi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.189-189
    • /
    • 2016
  • To generate information that contributes to climate change risk management, it is important to perform a precise assessment on the impact in diverse aspects. Considering this academic necessity, Japanese government launched continuous research project for the climate change impact assessment, and one of the representative project is Program for Risk Information on Climate Change (Sousei Program), Theme D; Precise Impact Assessment on Climate Change (FY2012 ~ FY2016). In this research program, quantitative impact assessments have been doing from a variety of perspectives including natural hazards, water resources, and ecosystems and biodiversity. Especially for the natural hazards aspect, a comprehensive impact assessment has been carried out with the worst-case scenario of typhoons, which cause the most serious weather-related damage in Japan, concerning the frequency and scale of the typhoons as well as accompanying disasters by heavy rainfall, strong winds, high tides, high waves, and landslides. In this presentation, a framework of comprehensive impact assessment with the worst-case scenario under the climate change condition is introduced based on a case study of Theme D in Sousei program There are approx. 25 typhoons annually and around 10 of those approach or make landfall in Japan. The number of typhoons may not change increase in the future, but it is known that a small alteration in the path of a typhoon can have an extremely large impact on the amount of rain and wind Japan receives, and as a result, cause immense damage. Specifically, it is important to assess the impact of a complex disaster including precipitation, strong winds, river overflows, and high tide inundation, simulating how different the damage of Isewan Typhoon (T5915) in 1959 would have been if the typhoon had taken a different path, or how powerful or how much damage it would cause if Isewan Typhoon occurs again in the future when the sea surface water temperature has risen due to climate changes (Pseudo global warming experiment). The research group also predict and assess how the frequency of "100-years return period" disasters and worst-case damage will change in the coming century. As a final goal in this research activity, the natural disaster impact assessment will extend not only Japan but also major rivers in Southeast Asia, with a special focus on floods and inundations.

  • PDF

The Effect of Road Networks on Urban Resilience in Flooding (도시침수 시 도로네트워크가 도시회복도에 미치는 영향 분석)

  • Hyung Jun Park;Dong Hyun Kim;Hyun Jung Lee;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.85-98
    • /
    • 2023
  • Flood is one of the most frequent natural disasters worldwide. In Korea, the probability of urban flooding is greatly increasing due to complex factors such as global warming, an increase in impervious areas, and limitations in expanding water supply facilities in existing urban areas. However, large-scale civil engineering works to prevent urban inundation are socially and economically difficult to obtain national consent. Recently the importance of resilience, which is the ability to return to the original state after a disaster through rapid recovery while preparing for natural disasters to a level that the local community can afford socially and economically, is increasing. Accordingly, various studies on urban resilience have been conducted, but the resilience measurement method related to the lifeline that provides essential services of the city is insufficient. However, among lifelines, road networks are important facilities for the transportation of recovery resources and rapid recovery in the event of a natural disaster, so road networks are a major factor that must be considered when measuring the degree of recovery of a city in the field of natural disasters. Therefore, this study proposes a recovery evaluation method considering the characteristics of resilience and road networks in the urban flooding field and analyzes the effect of road networks on urban resilience.

Inundating Disaster Assessment in Coastal Areas Using Urban Flood Model (도시홍수모델을 이용한 해안지역의 침수재해평가)

  • Yoo Hwan-Hee;Kim Weon-Seok;Kim Seong-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • In recent years, a large natural disasters have occurred due to worldwide abnormal weather and the amount of damage has been increased more resulting from high density population and a large-sized buildings of the urbanized area. In this study. we estimate the flooded area according to rainfall probability intensify and sea level in Woreong dong, Masan occurred flood damages by typhoon Maemi using SWMM, a dynamic rainfall-runoff simulation model in urban area, and then analyze the damage of flood expected area through connecting with GIS database. In result, we can predict accurately expected area of inundation according to the rainfall intensity and sea level rise through dividing the study area into sub-area and estimating a flooded area and height using SWMM. We provide also the shelter information available for urban planning and flood risk estimation by landuse in expected flood area. Further research for hazard management system construction linked with web or wireless communication technology expects to increase its application.

Appropriateness analysis of design rainfall factors using the rainfall data of an inundated flood events (침수 홍수사상의 강우자료를 활용한 설계강우 요소의 적정성 분석)

  • Yu, Byeong-Wook;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The purpose of this study is to analyze whether design rainfall and hyetograph, which are the main elements of design rainfall, can properly reflect the those of observed rainfalls through inundated rainfall events. The target areas were selected at seven large cities with high damages regarding to the flooding. Comparative analysis between probability and observed rainfall shows that 57% of the cases, in which rainfall amount through the IDF curve is estimated lower than the observed rainfall, do not properly reflect the observed rainfalls. In particular, this trend is exacerbated by the cases in low return period and the rain type of typhoon or frontal rain. The comparative results of rainfall intensity formula showed that the Talbot and Japanese formula were stable in the short- and long-term return periods, respectively. The comparison of hyetograph results also showed that the Mononobe method properly reflects the maximum rainfall intensity and the Huff method properly reflects the shape of rainfall pattern.

Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario (고해상도 기후시나리오를 이용한 서울지역 배수시스템의 기후변화 영향 분석)

  • Lee, Moon-Hwan;Kim, Jae-Pyo;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.345-355
    • /
    • 2015
  • Climate change impact on urban drainage system are analyzed in Seoul by using high-resolution climate change scenario comparing 2000s (1971~2000) with 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2100). The historical hourly observed rainfall data were collected from KMA and the climate change scenario-based hourly rainfall data were produced by RegCM3 and Sub-BATS scheme in this study. The spatial resolution obtained from dynamic downscaling was $5{\times}5km$. The comparison of probability rainfalls between 2000s and 2080s showed that the change rates are ranged on 28~54%. In particular, the increase rates of probability rainfall were significant on 3, 6 and 24-hour rain durations. XP-SWMM model was used for analyzing the climate change impacts on urban drainage system. As the result, due to the increase of rainfall intensities, the inundated areas as a function of number of flooded manhole and overflow amounts were increasing rapidly for the 3 future periods in the selected Gongneung 1, Seocho 2, Sinrim 4 drainage systems. It can be concluded that the current drainage systems on the selected study area are vulnerable to climate change and require some reasonable climate change adaptation strategies.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.