• Title/Summary/Keyword: inulin induction

Search Result 6, Processing Time 0.017 seconds

Regulation of Cycloinulooligosaccharide Fructanotransferase Synthesis in Bacillus macerans and Bacillus subtilis

  • Kim, Hwa-Young;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.877-880
    • /
    • 2000
  • Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cyclooligosaccharides consisting of six to eight molecules $\beta$-($2\rightarrow1$)-linked cyclic D-fructofuranose through intramolecular transfructosylation. We have examined the regulation of CFTase synthesis in Bacillus macerans and Bacillus subtilis. Synthesis of the CFTase was induced by inulin and it was subject to carbon catabolite repression (CCR) by glucose in both microorganisms. The DNA sequence upstream of the promoter of the CFTase gene was not involved in the inulin induction and glucose repression of the CFTase gene expression in B. subtilis. This suggests that the DNA element(s) responsible for the inuline induction and glucose repression is located downstream of the promoter region. Unexpectedly, the CCR of the expression of CFTase gene was observed not to be dependent on CcpA protein in B. subtilis.

  • PDF

Biosynthetic Regulation of Inulinase from Bacillus sphaericus 188-1 (Bacillus sphaericus 188-1이 생성하는 Inulinase의 생합성 조절)

  • Kim, Na-Mi;Lee, Jong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.77-81
    • /
    • 2001
  • Regulation of inulinase biosynthesis was studied in Bacillus sphaericus 188-1 Biosynthesis of inulinase was effectively induced in the presence of 0.5% inulin for 8 hrs. Fructose (0.5%) repressed the inulinase induction by inulin and as late as addition time of fructose, inulinase formation was decreased. Catabolite repression was not reduced by the addition of CAMP for 8 hrs of induction.

  • PDF

Inulin stimulates NO synthesis via activation of PKC-$\alpha$ and protein tyrosine kinase, resulting in the activation of NF-$textsc{k}$B by IFN-ν-primed RAW 264.7 cells

  • Koo, Hyun-Na;Hong, Seung-Heon;Kim, Hyung-Min
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • Inulin, an active component of Chicorium intybus root, has been shown to stimulate the growth of bifidobacteria, and inhibit colon carcinogenesis. NO mediates a number of the host-defense functions of activated macrophages, including antimicrobial and tumoricidal activity. We examined the effect of inulin on the synthesis of NO in RAW 264.7 cells. Inulin alone had no effect, whereas inulin with IFN-ν synergistically increased the NO production and inducible NO synthase (iNOS) expression in RAW 264.7 cells. Synergy between IFN-ν and inulin was mainly dependent on inulin-induced TNF-${\alpha}$ secretion. Also, protein kinase C (PKC)-${\alpha}$ was involved in the inulin-induced NO production. Inulin-mediated NO production was inhibited by the protein tyrosine kinase (PTK) inhibitor, tyrphostin AG126. Since iNOS gene transcriptions have been shown to be under the control of the NF -$\kappa$B/Rel family of transcription factors, we assessed the effect of inulin on NF -$\kappa$B/Rel using an EMSA. Inulin produced strong induction of NF-$\kappa$B/Rel binding, whereas AP-l binding was slightly induced in RAW 264.7 cells. Inulin stimulated phosphorylation and degradation of I$\kappa$B-${\alpha}$. These results suggest that in IFN-ν-primed RAW 264.7 cells inulin might stimulate NO synthesis via activation of PKC-${\alpha}$ and PTK, resulting in the activation of NF-$\kappa$B.

  • PDF

Cloning, Expression, and Purification of Exoinulinase from Bacillus sp. snu-7

  • Kim, Kyoung-Yun;Koo, Bong-Seong;Jo, Do-Hyun;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.344-349
    • /
    • 2004
  • A gene encoding inulin-degrading enzyme of Bacillus sp. snu-7 with ORF of 1536 nucleotides was cloned. And it was overexpressed as His-tagged protein in E. coli BL21(DE3) pLysS using pRSET B vector containing mature enzyme sequence. Maximum enzyme production was achieved by IPTG (0.1 mM) induction at $OD_{600}$ 1.2 and $30^{\circ}C$ followed by 6 h incubation. The expressed protein purified through immobilized metal affinity chromatography showed molecular mass of 60 kDa on SDS-PAGE. Results of thin-layer chromatography using inulin as a substrate showed the enzyme to be an exotype inulinase capable of producing only monomeric fructose as a product. $K_m$ and $k_{cat}$, for the hydrolyses of inulin and sucrose were $2.28\pm0.08$ mM and 358.05$\pm$20.38 $min^{-l}$, and 22.02$\pm$0.41 mM and 4619.11$\pm$215.12 $$min^{-1}, respectively. Optimal activity of the exoinulinase occurred at pH 7.0 and $50^{\circ}C$.

Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain

  • Lim, Seok-Hwan;Lee, Hong-Weon;Sok, Dai-Eun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1529-1533
    • /
    • 2010
  • The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 was overexpressed by using the GAL10 promotor in a ${\Delta}ga180$ strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to a mating factor ${\alpha}$ signal sequence for secretory expression. Use of the ${\Delta}ga180$ strain allowed for the galactose-free induction of inulinase expression using a glucose-only medium. Shake-flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the ${\Delta}ga180$ strain improved the expression of inulinase in the recombinant S. cerevisiae in both aerobic and anaerobic conditions by about 2.9- and 1.7-fold, respectively. A 5-l fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at the $OD_{600}$ of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5-l scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and with the pH controlled at 5.0. The temperature was maintained at $30^{\circ}C$ and $37^{\circ}C$, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/l, respectively.

Studies on the Induction of Available Mutants of Takju Yeast by UV light Irradiation (part 2) -On the Physiological Characteristics of the Mutants- (자외선조사(紫外線照射)에 의한 탁주효모(酵母)의 변이주육성(變異株育成)에 관한 연구 (제 2 보) -변이주(變異株)의 생리적성질(生理的性質)에 관하여)

  • Kim, Chan-Jo;Oh, Man-Jin;Kim, Seung-Yul
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.16-22
    • /
    • 1975
  • This experiment was carried out to investigate the physiological characteristics of two original yeasts, 5-Y-5 and 6-Y-6, which selected from 24 Takju yeasts and three mutants, 30-24,30-81 and 40-27. induced from two original yeasts by the irradiation of UV light. The results were summarized as follows. 1) Alcohol tolerances of three mutants were decreased in some degree as compared with those of original yeasts. 2) Tolerances of lactic and citric acids of acid producing mutant 30-81, was increased than those of original yeasts. 3) In the case of using ammonium sulfate as a nitrogen source, two original yeasts and three mutants required Ca-pantothenate as a essential growth factor and four strains of yeasts except the mutant, 30-81, required biotin as a stimulated growth factor, When asparagine was used as a nitrogen source, two original yeasts and three mutants showed the same as above result but the stimulated effect of biotin was far less. 4) Propagation powers of the mutants were weaken than those of original yeasts, particular that of acid producing mutant, 30-81, was the weakest in the three mutants. 5) The optimum temperature for fermentation of original yeasts were $30^{\circ}C\;to\;35^{\circ}C$ but three mutants were $25^{\circ}C\;to\;30^{\circ}C$. 6) The optimum pH for fermentation of original yeasts were pH 5 to 6, and there is no appreciable difference between original yeasts and three mutants. The fermentation power of mutant,30-81, was decreased more rapidly than those of other mutants according to approach neutral. Three mutants were more sensible to heat than original yeasts. 7) Two original yeasts and three mutants were inhibited more over 20 percent of sugar for fermentation and three mutants were more sensible to sugar concentration than original yeasts.

  • PDF