• Title/Summary/Keyword: introduction to engineering design

Search Result 461, Processing Time 0.024 seconds

An analytical solution of bending thin plates with different moduli in tension and compression

  • He, Xiao-Ting;Hu, Xing-Jian;Sun, Jun-Yi;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.363-380
    • /
    • 2010
  • Materials which exhibit different elastic moduli in tension and compression are known as bimodular materials. The bimodular materials model, which is founded on the criterion of positive-negative signs of principal stress, is important for the structural analysis and design. However, due to the inherent complexity of the constitutive relation, it is difficult to obtain an analytical solution of a bimodular bending components except in particular simple problems. Based on the existent simplified model, this paper solves analytically bending thin plates with different moduli in tension and compression. By using the continuity conditions of stress components in unknown neutral layer, we determine the location of the neutral layer, and derive the governing differential equation for deflection, the flexural rigidity, and the internal forces in the thin plate. We also use a circular thin plate with bimodulus to illustrate the application of this solution derived in this paper. The results show that the introduction of different moduli has influences on the flexural stiffness of the bending thin plate.

Design of Emotional Learning Controllers for AC Voltage and Circulating Current of Wind-Farm-Side Modular Multilevel Converters

  • Li, Keli;Liao, Yong;Liu, Ren;Zhang, Jimiao
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2294-2305
    • /
    • 2016
  • The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

A Study on Safety Improvement for Mobile Hydrogen Refueling Station by HAZOP Analysis (위험과 운전 분석을 통한 이동식 수소충전소 안전성 향상에 관한 연구)

  • BYUN, YOON-SUP
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.299-307
    • /
    • 2021
  • In order to expand the supply of hydrogen vehicles, the first thing to be done is to build an infrastructure to supply hydrogen. There are fixed and mobile types of hydrogen refueling stations that can supply hydrogen. Mobile hydrogen refueling stations have the advantage of supplying hydrogen to two or three areas, so the introduction of mobile hydrogen refueling stations is considered at the initial stage of hydrogen vehicle dissemination. However, mobile hydrogen refueling stations have greater risks than fixed hydrogen refueling stations due to the hazard associated with movement and intensive installation of facilities in vehicle, so stricter design standards to lower the risk must be applied. Therefore, in this study, basic data for establishing safety standards for mobile hydrogen refueling stations were proposed by suggesting improvements such as the location of emergency shutoff valves, the number of gas detectors etc., using HAZOP analysis.

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

Analysis of Specific Problems in Laser Scanning Optical System Design

  • Joo, Won-Don
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • We analyze aberrations in an optical laser printer system in order to know how to determine an allowable non-uniformity of the movement of a light spot, how to determine allowed variation of spot sizes, and how to minimize the influence of these deviations on technological errors. In this paper, the correction and the tolerance of distortion are analyzed by using the concept of zonal and global distortions. The tolerance of field curvature is also obtained from Gaussian beam properties. In order to reduce the change of the entrance pupil position and to make a more compact laser printer system the minimum size of the rotator is exactly derived from the geometry with the introduction of the shift angle of the input beam.

A Proposal of BIM Work Process to Support Construct-ability Analysis from Practitioners Viewpoint (현장실무자 관점에서의 시공성 검토 지원을 위한 BIM 업무프로세스 제안)

  • Kim, Dae-Sung;Choi, Hye-Mi;Kim, Ju-Hyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.561-569
    • /
    • 2014
  • In construction site, BIM is used in part of construct-ability review and design mistake checking. However, in a current domestic construction site, except public order project, most of work in private order project has been processing based on 2D work. As an expert resists to certain point in introduction of new technique, it may be shown in the introduction of BIM. For this, We need to analysis construct-ability of introducing BIM, work field of introducing and operational capability about present domestic construction engineers. Therefore, this study solves the problem of existing construct-ability analysis, and it visualizes the various information and objects for an effective job performance. Furthermore, construct-ability analysis by BIM that can use an intergrated management is theoretically examined and practical field-application priority among conclusions is proposed through a survey targeting on the hand-on worker. Therefore, this study suggests a factor supplying for a business-centric introduction plan and support condition.

Simulation of Subassembly Production at Shipyards

  • Hertel, Erik;Nienhuis, Ubald;Steinhauer, Dirk
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • To survive in the current shipbuilding industry it is of vital importance for shipyards to achieve an optimal utilization of resources, make an achievable planning and ensure that this planning is kept. Possible problems should be eliminated before production starts and if unexpected disturbances occur in the actual production the right measures should be taken. Due to the dynamic nature of the production process, the continuous variation in products and the complexity of both, all this can hardly be achieved with conventional static planning and analysis systems. Simulation provides a solution here, since this enables the modelling and evaluation of the dynamic relations between product and production process. After a global introduction to production simulation in general and the application of simulation at the Flensburger shipyard, this paper presents a tool that has been developed to simulate the various complex assembly processes taking place at shipyards. Subsequently the simulation model for the subassembly production at Flensburger, in which this tool is applied, will be discussed.

A Basic Study on the BIM Service Based SLA for Setting the Application Level of BIM in the Procurement Phase (발주단계에서 BIM의 적용수준 설정을 위한 SLA 기반의 BIM 서비스에 관한 기초연구)

  • Kim, Ji-Yun;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.251-252
    • /
    • 2016
  • Recently policy and clouding system to mandate the introduction of BIM in construction industry, various sensors technology, BIM in ICT technology and fusion, such as 3D scanning and printing technology has been further activated. However, the expression level of diversification associated with it, plan within one of the BIM project, design, engineering, it is difficult to have a different application has been consistent for each field, such as construction. Thus fell the efficiency of BIM apply, it is difficult to determine the appropriate level of BIM in the business early stage in order destination of position. In this study, in order to solve this problem, by utilizing SLA used in the IT field, it attempts to explore scheme which can be evaluated targeted level of BIM suitable for business in the planning phase.

  • PDF

Analysis of Domestic and Overseas Environment to Introduce Performance Warranty Contracting for Pavements into Korea (도로포장 성능보증계약제도 도입을 위한 국내외 적용환경 분석)

  • Kim, Tea-Song;Seo, Yong-Chil;Lee, Sang-Beom;Koo, Jai-Dong;Kim, Kyong-Ju
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.216-221
    • /
    • 2008
  • This study has been carried out in order to observe the status of performance warranty contracting system currently being implemented at the advanced countries including Europe, U.S.A., and Japan, review the introduction feasibility and possibility. For this purposes this study has surveyed the concept and necessity of performance warranty contracting system as well as the status of domestic performance warranty contracting system. Especially the application environment for the performance warranty contracting system of Europe, U.S.A., Japan and Korea in terms of maintenance guarantee liability system, performance warranty regulations for design-build contracting system, selection method of successful bidder, performance warranty means, project contracting system including maintenance cost, and specifications and contract conditions for performance warranty system have been comparatively evaluated. And introduction methods of performance warranty contracting system were suggested.

  • PDF

Introduction to the Intelligent Excavating System: Concept design of Intuitive Operator Control Unit (지능형 굴삭시스템 개발: 직감형 원격제어 시스템 개념설계)

  • Yu, Byung-Gab;Lee, Seung-Yeol;Lee, Sang-Ho;Yu, Seok-Jong;Yu, Bo-Hyun;Jang, June-Hyun;Han, Chang-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.68-73
    • /
    • 2007
  • Civil engineering construction work has always been accompanied by a high proportion of tasks that are either dangerous or unpleasant or both. Enhancing the general working environment and boosting safety levels are critical issues for the industry. In addition to that, the industry has been slow to utilize automation & robot technology, and there is substantial scope for the use of technology th boost efficiency, cut costs and improve quality levels in construction. In a bid to address this issue, Ministry of Construction & Transportation launched a five-year project in 2003 entitled Development of Intelligent Excavating System. The aim of the project is to use telecommunications and robotics technology to minimize inefficiencies and eliminate the dangerous and unpleasant aspects of tile construction process through the development of specific applications such as IT-equipped construction machinery and advanced construction management systems. In this paper, the project introduces on the research and development content related to multi-disciplinary, a intuitive operator control unit(Robot Technology) included.

  • PDF