• Title/Summary/Keyword: intrinsic mode function

Search Result 38, Processing Time 0.023 seconds

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Data-Driven Signal Decomposition using Improved Ensemble EMD Method (개선된 앙상블 EMD 방법을 이용한 데이터 기반 신호 분해)

  • Lee, Geum-Boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.279-286
    • /
    • 2015
  • EMD is a fully data-driven signal processing method without using any predetermined basis function and requiring any user parameters setting. However EMD experiences a problem of mode mixing which interferes with decomposing the signal into similar oscillations within a mode. To overcome the problem, EEMD method was introduced. The algorithm performs the EMD method over an ensemble of the signal added independent identically distributed white noise of the same standard deviation. Even so EEMD created problems when the decomposition is complete. The ensemble of different signal with added noise may produce different number of modes and the reconstructed signal includes residual noise. This paper propose an modified EEMD method to overcome mode mixing of EMD, to provide an exact reconstruction of the original signal, and to separate modes with lower cost than EEMD's. The experimental results show that the proposed method provides a better separation of the modes with less number of sifting iterations, costs 20.87% for a complete decomposition of the signal and demonstrates superior performance in the signal reconstruction, compared with EEMD.

Performance of Noise Mitigation scheme based on EMD for Heterogeneous Networks (이기종 통신 시스템을 위한 EMD 기반 노이즈 완화 기법의 성능)

  • Sim, Isaac;Hwang, Yu Min;Yang, Byong Moon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • In this paper, we proposed a scheme to mitigate noises based on the EMD scheme for heterogeneous communication systems. Noise-corrupted data can be decomposed into a finite number of IMF components. Using the EMD method, we can mitigate noise with eliminate noise-corrupted IMF components. We proposed iteration stop rule for reduce EMD computation time. Simulation results show that proposed EMD scheme based on proposed algorithm for iteration stop rule efficiently mitigates 3 types of noise and reduces its computational time.

Single Line-to-ground Fault Location and Information Modeling Based on the Interaction between Intelligent Distribution Equipment

  • Wang, Lei;Luo, Wei;Weng, Liangjie;Hu, Yongbo;Li, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1807-1813
    • /
    • 2018
  • In this paper, the fault line selection and location problems of single line-to-ground (SLG) fault in distribution network are addressed. Firstly, the adaptive filtering property for empirical mode decomposition is formulated. Then in view of the different characteristics showed by the intrinsic mode functions(IMF) under different fault inception angles obtained by empirical mode decomposition, the sign of peak value about the low-frequency IMF and the capacitance transient energy is chosen as the fault line selection criteria according to the different proportion occupied by the low-frequency components. Finally, the fault location is determined based upon the comparison result with adjacent fault passage indicators' (FPI) waveform on the strength of the interaction between the distribution terminal unit(DTU) and the FPI. Moreover, the logic nodes regarding to fault line selection and location are newly expanded according to IEC61850, which also provides reference to acquaint the DTU or FPI's function and monitoring. The simulation results validate the effectiveness of the proposed fault line selection and location methods.

A Multi-Resolution Approach to Non-Stationary Financial Time Series Using the Hilbert-Huang Transform

  • Oh, Hee-Seok;Suh, Jeong-Ho;Kim, Dong-Hoh
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.499-513
    • /
    • 2009
  • An economic signal in the real world usually reflects complex phenomena. One may have difficulty both extracting and interpreting information embedded in such a signal. A natural way to reduce complexity is to decompose the original signal into several simple components, and then analyze each component. Spectral analysis (Priestley, 1981) provides a tool to analyze such signals under the assumption that the time series is stationary. However when the signal is subject to non-stationary and nonlinear characteristics such as amplitude and frequency modulation along time scale, spectral analysis is not suitable. Huang et al. (1998b, 1999) proposed a data-adaptive decomposition method called empirical mode decomposition and then applied Hilbert spectral analysis to decomposed signals called intrinsic mode function. Huang et al. (1998b, 1999) named this two step procedure the Hilbert-Huang transform(HHT). Because of its robustness in the presence of nonlinearity and non-stationarity, HHT has been used in various fields. In this paper, we discuss the applications of the HHT and demonstrate its promising potential for non-stationary financial time series data provided through a Korean stock price index.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Extraction of the JEM Component in the Observation Range of Weakly Present JEM Based on Complex EMD (복소 EMD를 이용한 미약한 JEM의 관측 범위에서 JEM 성분의 추출)

  • Park, Ji-Hoon;Yang, Woo-Yong;Bae, Jun-Woo;Kang, Seong-Cheol;Kim, Chan-Hong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.700-708
    • /
    • 2014
  • Jet engine modulation(JEM) is a frequency modulation phenomenon of the radar signal induced by electromagnetic scattering from a rotating jet engine turbine. Although JEM can be used as a representative radar target recognition method by providing unique information on the target, its recognition performance may be degraded in the observation range of weakly present JEM. Hence, this paper presents a method for extracting the JEM component by decomposing the radar signal into intrisic mode functions(IMFs) via complex empirical mode decomposition(CEMD) and by combining them based on signal eccentricity. Its application to various signals demonstrated that the proposed method improved the clarity of JEM analysis and could extend the effective observation range of JEM.

Damage Detection for Bridge Pier System Using filbert-Huang Transom Technique (Hilbert-Huang변환을 이용한 교각시스템의 손상위치 추정기법)

  • 윤정방;심성한;장신애
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.159-168
    • /
    • 2002
  • A recently developed filbert-Huang transform (HHT) technique is applied to detect damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and nonstationary behavior, since the HHT can show the instantaneous frequency characteristics of the signal. A series of numerical simulations were conducted for bridge pier systems with damages under a controlled load with sweeping frequency. The results of the numerical simulation study indicate that the HHT method can reasonably identify damage locations using a limited number of acceleration sensors under severe measurement noise condition.

  • PDF

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

Prediction of the Successful Defibrillation using Hilbert-Huang Transform (Hilbert-Huang 변환을 이용한 제세동 성공 예측)

  • Jang, Yong-Gu;Jang, Seung-Jin;Hwang, Sung-Oh;Yoon, Young-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.45-54
    • /
    • 2007
  • Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.