본 글에서는 소위 '사기에 의한 외국재판'의 승인이 민사소송법 제217조 제1항 제3호의 공서양속에 반한다고 볼 수 있는지, 만일 그와 같이 본다면 구체적 요건은 무엇인지 검토하였다. 그 결론을 간단히 정리하면 다음과 같다. '사기에 의한 외국재판'의 승인은 우리의 절차적 공서에 반하기 때문에승인이 거부되어야 한다. 이때 '사기에 의한 외국재판'의 승인이 우리의 절차적 공서에 반하는지 여부를 심사하는 것이 실질재심사금지의 원칙을 고려했을 때 허용될 수 있는지 문제되는데, 위와 같은 심사의 과정에서도 실질재심사금지의 원칙이 전면적으로 적용되므로 실질재심사금지의 원칙에반하지 아니하는 경우에만 위와 같은 심사가 가능하다. 이와 같이 심사가가능한 경우는, 피고가 외국의 재판절차가 진행되는 동안에는 사기의 증거를 제출할 수 없었던 경우와 피고가 외국재판에서 증거 없이 사기의 주장을 하였지만 외국법원에서 받아들여지지 아니하고 재판이 종결된 후에 새로운 증거가 발견된 경우로 볼 수 있다. 그리고 '사기에 의한 외국재판'의 승인이 우리의 절차적 공서에 반하는지 여부를 결정하기 위한 구체적 요건은 공서양속의 엄격해석의 원칙을 바탕으로 다음과 같은 네 가지로 볼 수있다. (1) 사해의사가 존재할 것 (2) 기망에 의하여 피고의 소송관여를 방해하거나 허위의 증거제출을 동반한 허위의 주장으로 법원을 기망하는 등 부정한 방법을 사용하였을 것 (3) 외재적 사기로 인하여 피고가 절차에 참여하지 못하거나 내재적 사기로 인하여 외국법원이 실제의 권리관계와 다른내용의 판결을 하였을 것 (4) 피고의 절차적 기본권이 근본적으로 침해됨으로써 외국재판의 효력을 존중하는 것이 정의관념에 반하여 이를 도저히 묵과할 수 없는 사정이 있을 것. 위와 같은 결론은 대법원 2004. 10. 28. 선고2002다74213 판결과 많은 차이가 있는데, 무엇보다 내재적 사기와 외재적사기를 구분할 필요가 없고 '사기에 의한 외국재판'의 심사와 실질재심사금지의 원칙은 상호 충돌관계에 있는 것이 아니라 공존관계에 있다는 점에서큰 차이가 나타난다. 이러한 점에서 향후 대법원 판례의 변화를 기대하며본 글이 학계와 실무계에 조금이나마 도움이 되기를 바란다.
불법현금융통 적발모형 개발에 앙상블 접근방법을 사용하였다. 불법현금융통은 국내 신용카드사의 손익에 영향을 미치며 최근 국제화되고 있음에도 불구하고 학문적인 접근이 이루어지지 않았다. 부정행위 적발모형(Fraud Detection Model, FDM)은 데이터 불균형 문제로 인하여 좋은 성능을 얻기 어려운데, 다수의 모형을 결합하는 앙상블이 대안으로 제시되어 왔다. 앙상블에 포함된 모형들의 다양성이 보장된다면 단일모형에 비해 더 좋은 성능을 보인다는 점은 이미 인정되고 있으며, 최근 연구 결과는 학습된 모든 기본모형들을 사용하는 것보다 적절한 기본모형들만 선택하여 앙상블에 포함시키는 것이 바람직하다는 것이다. 본 논문에서는 효과적인 불법현금융통 적발을 위하여 축소된 앙상블 기법을 사용하는데, 정확성과 다양성 척도를 사용하여 앙상블에 참여할 기본모형을 선택하는 것이다. 다양성은 앙상블을 구성하는 기본모형들 사이의 불일치 (Disagreement or Ambiguity)를 의미하는데, FDM에 내재된 데이터 불균형문제를 고려하여 두 가지 측면에 중점을 두었다. 첫째, 학습 자료의 추출 과정에서 다양성을 확보하기 위한 소수 범주의 과잉추출 방법과 적절한 훈련 방법에 대해 설명하였다. 둘째, 소수범주에 초점을 맞추어 기존의 다양성 척도를 효과적인 척도로 변형시키고, 전진추가법과 후진소거법의 동적 다양성 계산법을 도입하여 앙상블에 참여할 기본모형을 평가하였다. 실험에 사용된 학습 알고리즘은 신경망, 의사결정수와 로짓 회귀분석이었으며, 동질적 앙상블과 이질적 앙상블을 구성하여 성능평가를 하였다. 실험결과 불법현금융통 적발모형에 있어 축소된 앙상블은 모든 기본모형이 포함된 앙상블과 성능 차이가 없었다. 축소된 앙상블은 앙상블 구성의 복잡성을 감소시키고 구현을 용이하게 한다는 점에서 FDM에서도 유력한 모형 수립 접근방법이 될 수 있음을 보였다.
International Journal of Advanced Culture Technology
/
제12권1호
/
pp.293-298
/
2024
The purpose of an internal control system is to prevent the occurrence of errors and fraud in the process of producing accounting information, thereby providing investors with reliable information. For the effective operation of an internal control system, it is necessary to secure a sufficient number of personnel and experienced staff. This study focuses on the personnel directly involved in producing accounting information, examining whether companies that invest in their internal control staff experience a mitigation in the phenomenon of valuation errors. The analysis revealed that the size and experience months of the personnel responsible for internal control have a significant negative relationship with valuation errors. This result implies that by securing sufficient personnel for the smooth operation of the internal control system and placing experienced staff within the system, investors can effectively make judgments about the intrinsic value based on quality accounting information, thereby reducing valuation errors.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.877-884
/
2011
의사결정나무는 데이터마이닝의 대표적인 알고리즘으로서, 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법이다. 일반적으로 의사결정나무의 모형 생성 시, 입력 변수의 수가 많을 경우 생성된 의사결정모형은 복잡한 형태가 될 수 있고, 모형 탐색 및 분석에 있어 어려움을 겪기도 한다. 이때 입력변수들 간의 내재적인 관련성은 없으나, 외적 변수에 의하여 각 변수가 우연히 어떤 다른 변수와 연결됨으로써 관련성이 있는 것으로 나타나는 것을 종종 볼 수 있다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 외적 관계를 파악할 수 있는 다중외적연관성규칙을 이용하여 의사결정나무 생성에 불필요한 입력변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.
Nor Fadzilah Abdullah;Ammar Riadh Kairaldeen;Asma Abu-Samah;Rosdiadee Nordin
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1986-2009
/
2024
The integration of blockchain technology with the rapid growth of Internet of Things (IoT) devices has enabled secure and decentralised data exchange. However, security vulnerabilities and performance limitations remain significant challenges in IoT blockchain networks. This work proposes a novel approach that combines transaction representation and machine learning techniques to address these challenges. Various clustering techniques, including k-means, DBSCAN, Gaussian Mixture Models (GMM), and Hierarchical clustering, were employed to effectively group unlabelled transaction data based on their intrinsic characteristics. Anomaly transaction prediction models based on classifiers were then developed using the labelled data. Performance metrics such as accuracy, precision, recall, and F1-measure were used to identify the minority class representing specious transactions or security threats. The classifiers were also evaluated on their performance using balanced and unbalanced data. Compared to unbalanced data, balanced data resulted in an overall average improvement of approximately 15.85% in accuracy, 88.76% in precision, 60% in recall, and 74.36% in F1-score. This demonstrates the effectiveness of each classifier as a robust classifier with consistently better predictive performance across various evaluation metrics. Moreover, the k-means and GMM clustering techniques outperformed other techniques in identifying security threats, underscoring the importance of appropriate feature selection and clustering methods. The findings have practical implications for reinforcing security and efficiency in real-world IoT blockchain networks, paving the way for future investigations and advancements.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.