
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, Jul. 2024                                            1986 
Copyright ⓒ 2024 KSII 

This research was supported in part by a research grant from the Malaysian Ministry of Higher Education 
[FRGS/1/2023/ICT08/UKM/02/1]. 
 

http://doi.org/10.3837/tiis.2024.07.014                                                                                                            ISSN : 1976-7277 

 

Machine Learning-Based Transactions 
Anomaly Prediction for Enhanced IoT 

Blockchain Network Security and 
Performance 

 

Nor Fadzilah Abdullah1,2*, Ammar Riadh Kairaldeen1, Asma Abu-Samah1,2,  
and Rosdiadee Nordin3  

1 Department of Electrical, Electronic, and Systems Engineering, Faculty of Engineering & Built Environment, 
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

2 Wireless Research@UKM, Universiti Kebangsaan Malaysia 
43600 UKM Bangi, Selangor, Malaysia 

3 Department of Engineering, School of Engineering and Technology, Sunway University,  
47500 Bandar Sunway, Selangor, Malaysia 

[e-mail: fadzilah.abdullah@ukm.edu.my, aaltotanje@gmail.com, asma@ukm.edu.my, 
rosdiadeen@sunway.edu.my] 

*Corresponding author: Nor Fadzilah Abdullah 
 

Received November 13, 2023; revised April 15, 2024; accepted June 30, 2024;  
published July 31, 2024 

 
 

Abstract 
 

The integration of blockchain technology with the rapid growth of Internet of Things (IoT) 
devices has enabled secure and decentralised data exchange. However, security vulnerabilities 
and performance limitations remain significant challenges in IoT blockchain networks. This 
work proposes a novel approach that combines transaction representation and machine 
learning techniques to address these challenges. Various clustering techniques, including k-
means, DBSCAN, Gaussian Mixture Models (GMM), and Hierarchical clustering, were 
employed to effectively group unlabelled transaction data based on their intrinsic 
characteristics. Anomaly transaction prediction models based on classifiers were then 
developed using the labelled data. Performance metrics such as accuracy, precision, recall, and 
F1-measure were used to identify the minority class representing specious transactions or 
security threats. The classifiers were also evaluated on their performance using balanced and 
unbalanced data. Compared to unbalanced data, balanced data resulted in an overall average 
improvement of approximately 15.85% in accuracy, 88.76% in precision, 60% in recall, and 
74.36% in F1-score. This demonstrates the effectiveness of each classifier as a robust classifier 
with consistently better predictive performance across various evaluation metrics. Moreover, 
the k-means and GMM clustering techniques outperformed other techniques in identifying 
security threats, underscoring the importance of appropriate feature selection and clustering 
methods. The findings have practical implications for reinforcing security and efficiency in 
real-world IoT blockchain networks, paving the way for future investigations and 
advancements. 
 

Keywords: Anomaly prediction, Blockchain, Clustering algorithms, Fraud detection, 
Internet of Things (IoT), Legitimate transactions, Machine learning, Privacy, Security. 
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 1. Introduction  

The rapid advancement of the Internet of Things (IoT) has revolutionised the 
interconnectedness and data-sharing capabilities of devices within a connected environment 
[1]. Equipped with sensors and software, IoT devices collect and transmit data for processing 
and analysis over the network [2]. Blockchain technology has also gained significant attention, 
with its decentralised and secure nature making it a promising platform for data exchange, 
decentralised identity management, and data provenance verification in a variety of domains 
[3], [4]. 

The main challenge in the implementation of IoT blockchain networks is the complex 
trade-off between security and performance. Most IoT devices have limited processing power, 
battery life and storage capacity. Validating the transactions from a massive amount of data 
generated by IoT devices can be slow and expensive. Trusting the decisions made by the 
system becomes difficult, particularly when it comes to making autonomous decisions based 
on data from IoT devices and information stored on the Blockchain. Additionally, performance 
is also critical, as IoT blockchain networks generate substantial data volumes that require 
efficient processing and storage capabilities. Scalability issues arise when the network 
experiences an influx of devices and transactions, potentially leading to delays and congestion 
[5]. Moreover, the choice of consensus algorithm directly affects transaction speed and overall 
performance specifically when focusing on integrating Blockchain into an IoT network [6]. 
Therefore, it is important to detect unexpected or anomalous transactions, so these can be 
isolated from further IoT blockchain network processing. 

Extensive research is underway to improve the security and performance of IoT 
blockchain networks. This ongoing effort involves developing lightweight cryptographic 
protocols, efficient consensus algorithms and identity management systems, as well as data 
processing and storage optimisation techniques [7]. Furthermore, cutting-edge technologies 
such as machine learning and artificial intelligence are being explored to strengthen security 
measures, improve data integrity, detect anomalies, reduce security risks, and improve 
network performance [8]. 

One promising strategy for enhancing network performance is to utilise transaction 
representation techniques to reduce storage and computational requirements [9]. By 
intelligently encoding and structuring transactions, this can improve data processing speed, 
reduce latency, and increase scalability. Machine learning algorithms can analyse the vast 
amount of data generated by IoT devices to identify patterns and potential security threats, 
thereby strengthening the overall security of the blockchain network [10].  

Although significant progress has been made in addressing security vulnerabilities or 
performance limitations in IoT blockchain networks, a crucial research gap remains in 
developing holistic solutions that simultaneously address both aspects. Therefore, an 
integrated solution that combines transaction representation techniques and machine learning 
algorithms is proposed to optimise data processing and storage, proactively identify security 
threats, and accurately detect anomalies. This approach helps to mitigate security 
vulnerabilities, enhance network performance, reduce costs, and improve overall efficiency, 
thereby facilitating the widespread adoption of IoT blockchain technology. A summary of the 
key contributions of this paper are outlined below: 
 
1. Integration of Blockchain IoT Environment and Machine Learning Techniques: 

An IoT blockchain network was developed to integrate a transaction representation 
framework, machine learning (ML) clustering techniques, and prediction algorithms. 



1988                                           Nor Fadzilah Abdullah et al.: Machine Learning-Based Transactions Anomaly Prediction  
for Enhanced IoT Blockchain Network Security and Performance  

This proposed system model proactively detects and prevents malicious activities, 
identifies anomalies, and strengthens identity management systems. Based on the 
threat prediction output, user and data integrity checks are adopted only for normal 
transactions, while suspicious transactions will undergo further procedures for threat 
investigation. This ensures the integrity and confidentiality of data transmitted across 
the network. 

2. Performance Analysis and Experimental Evaluation: The effectiveness and 
efficiency of the proposed solution were evaluated using real-world scenarios and two 
types of datasets (unbalanced and balanced). Furthermore, two datasets (unlabelled 
and labelled) were used to train and validate the system performance. The proposed 
approach can improve data processing speed, reduce latency, and enhance scalability 
within IoT blockchain networks with extensive data generated by IoT devices to 
identify patterns and potential security threats. 

3. Decision Support, Practical Implications and Future Directions: The potential 
applications of the proposed solution across various domains were discussed, and 
future research directions to further enhance the security and performance of IoT 
blockchain networks were identified. Areas of exploration include advanced machine 
learning algorithms, large-scale deployment optimisation techniques, and robust 
consensus algorithms for IoT blockchain networks. 

 
The rest of the paper is structured as follows: Section II provides a comprehensive 

literature review, summarising existing research and state-of-the-art approaches in IoT 
blockchain networks while highlighting challenges and limitations. Section III explains the 
proposed anomaly prediction system model, including the deployed dataset, experimental 
setup, and selection of machine learning algorithms for performance optimisation. Section IV 
presents a performance evaluation of the proposed system model based on the interpretation 
of the clustering and prediction analysis results. Finally, Section V concludes the research's 
key findings and contributions. 

2. Related Works 
The convergence of IoT and blockchain technologies has attracted substantial research 
attention due to their potential for enhancing security, privacy, and scalability in 
interconnected systems. Recently, machine learning (ML) has also emerged as a data-driven 
intelligent catalyst in this convergence for extracting meaningful patterns, identifying 
anomalies, predicting future outcomes and optimising processes. 

Blockchain Internet of Things (BIoT) signifies a revolutionary era for secure, autonomous 
digital ecosystems. Blockchain technology introduces a layer of security and trust to the IoT, 
mitigating risks associated with data breaches and cyber-attacks by distributing data across a 
decentralized network [11]. This enhances scalability, allowing for a more robust 
infrastructure that can accommodate the exponential growth of IoT devices. Furthermore, 
BIoT enables the implementation of smart contracts, automating processes without the need 
for centralized authority, thereby reducing costs and increasing efficiency in operations like 
supply chain management. However, this integration is not without challenges. The resource 
constraints of IoT devices, such as limited processing power and energy, pose significant 
obstacles to the adoption of blockchain, which is computationally intensive [6]. Additionally, 
interoperability between different IoT platforms and blockchain systems remains a complex 
issue that requires standardization. An intriguing aspect worthy of discussion is the potential 
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of BIoT in creating fully autonomous and self-regulating systems, revolutionizing industries 
by making them more resilient, transparent, and efficient. This blend of technologies could 
pave the way for innovative applications, unlocking new avenues for sustainability and 
economic growth. 

In the context of blockchains, ML algorithms have been proposed to enhance the security 
of IoT blockchain networks. Anomaly prediction methods, particularly those utilising deep 
learning models, can detect unusual patterns or behaviours in IoT data, indicating potential 
security risks. The authors in [12] presented a machine learning-based approach for anomaly 
prediction in IoT systems, leveraging blockchain for data integrity. Similarly, [13] proposed a 
blockchain-based framework that utilises machine learning algorithms to detect and prevent 
cyber-attacks in IoT networks. Research conducted by [14] demonstrates the effectiveness of 
machine learning in identifying anomalies in IoT blockchain networks. In [15], machine 
learning techniques for anomaly prediction using support vector machines (SVM) and neural 
networks have been explored to identify potential security threats in IoT blockchain networks. 

Privacy and identity management of IoT blockchain has also received significant attention. 
A blockchain-based framework for secure and decentralised identity management of IoT 
devices to protect user privacy and ensure reliable authentication has been proposed [16], [17]. 
Authors in [18] proposed a privacy-preserving data-sharing scheme using blockchain, 
enabling secure and controlled data sharing among IoT devices. The zero-knowledge proofs, 
such as zk-SNARKs (zero-knowledge succinct non-interactive arguments of knowledge) [19], 
were proposed for transaction verification without revealing transaction details. This approach 
ensures data privacy and integrity while maintaining the transparency of a blockchain. 

Blockchain transaction delves into sectors where it secures and validates data from IoT 
devices, revolutionizing processes from supply chain logistics to urban management, critical 
in industries where product authenticity and safety are paramount. The transaction terminology 
does not strictly refer to a financial exchange. It can be any transfer of data or information that 
is recorded on the IoT blockchain. In the context of IoT, a transaction could be the exchange 
of data between devices, such as temperature readings from sensors, GPS locations from 
trackers, or status updates from smart devices [20]. These transactions in all cases have 
numerical values that are secure, benefiting from blockchain's inherent properties like 
decentralization, transparency, and immutability. 

Scalability is another critical aspect of IoT blockchain networks. In [21], the scalability of 
blockchain systems was reviewed, and various techniques to improve scalability were 
highlighted. Additionally, [5] investigated the integration of cloud computing and IoT, 
uncovering potential synergies between these technologies to address scalability concerns. 
Another approach involves integrating off-chain solutions to mitigate scalability limitations. 
The Lightning Network, introduced by [22], enables the execution of microtransactions off the 
main blockchain, enhancing throughput and reducing transaction fees. Leveraging payment 
channels and smart contracts provide a scalable and efficient solution for IoT blockchain 
networks. 

Sharding techniques have emerged as a promising solution in IoT blockchain networks to 
improve performance [23], [24]. It involves dividing the blockchain into smaller partitions, 
known as shards, enabling concurrent and shared processing of transactions to achieve higher 
throughput and enhanced network scalability.  

Advancements have been made in addressing security and performance issues in IoT 
blockchain networks. The use of consensus algorithms, such as the Proof-of-Stake (PoS), has 
been proposed by [25] to improve the scalability and energy efficiency of blockchain networks. 
The PoS algorithm achieves consensus by allocating mining rights based on participants' stake 
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in the network, reducing computational overhead and enabling faster transaction processing. 
The results show that PoS performs better than traditional Proof-of-Work (PoW) algorithms.  

The existing research in the integration of ML, IoT and blockchain technologies has made 
significant contributions. The study in [28] proposes using ML for generating secure side 
chains in IoT-based blockchain systems, enhancing security without excessive computational 
complexity, and making it suitable for real-time applications. The authors in [29] propose 
enhancing data privacy in IoT-enabled blockchain through machine learning algorithms, 
ensuring secure data transactions in telehealth supply chains with improved security levels. 
The ML model processes the data management based on the number of transactions, time of 
transaction, and transaction confirmation time. A smart city intrusion detection system is 
proposed in [30] using an integration of ML and decentralized blockchain architecture to 
secure the fog computing layer vulnerability. A blockchain-based solution for secure and 
private IoT in smart homes, utilizing a Deep Extreme Learning Machine (DELM) was 
proposed in [31] by carefully evaluating the network reliability against security privacy, 
integrity, and accessibility goals. Transaction representation allows for the proactive 
identification of security vulnerabilities and the implementation of robust security measures. 
The work conducted by [32] showcased the effectiveness of transaction representation 
techniques in detecting fraud in financial systems. Similarly, the research undertaken by [25] 
demonstrated the potential of machine learning algorithms in optimising resource allocation 
and improving performance in IoT networks.  

However, these works warrant further critical analysis of the current research. While 
machine learning-based approaches have shown promise in detecting anomalies and 
preventing cyber-attacks in IoT networks, there is a lack of performance evaluation of the 
algorithms using realistic datasets. Therefore, it is crucial to assess the performance of these 
algorithms in detecting security threats while considering the computational and resource 
requirements of using machine learning implementation in resource-constrained IoT devices. 
Table 1 summarises the focus and limitations of previous works related to ML adoption in 
IoT blockchain networks. The approach presented in this paper extends our previous works in 
[26] and [27] by adding transaction representation, machine learning, and proactive security 
measures to tackle the security, performance, scalability, and cost-effectiveness challenges in 
IoT blockchain networks. 

 
Table 1. Summary of Previous Works on ML-based IoT Blockchain Network 

Source Focus  Limitation 

[28] 

Proposed ML model for calculation for the 
age of side chains in IoT blockchain 
network, with high-security execution but 
generally less computational complexity, 
suitable for near real-time (NRT) 
applications. 

Does not consider any anomaly detection in 
the proposed algorithm. 

[29] 

Enhancing data privacy in IoT-enabled 
blockchain through ML algorithms, 
ensuring secure data transactions in 
telehealth supply chains with improved 
security levels.  

Scalable local ledgers compromise on peer 
validation of transactions.  

[30] 

Designing a smart city intrusion detection 
system architecture using machine learning 
and blockchain technology to secure the fog 
computing layer vulnerability. 

Lack of sufficient training real dataset for 
labelling and validation of the model. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1991 

Source Focus  Limitation 

[31] 

Introducing blockchain-based solution for 
secure and private IoT smart homes, 
utilizing Deep Extreme Learning Machine 
(DELM).  
 

Highly demanding computational and time 
requirements, with marginal overhead 
creation. 

3. System Model 
 

 
 

Fig. 1. System architecture for transactions anomaly prediction in IoT blockchains. 
 
This work proposed a system model based on the design goal of a threat prediction scheme as 
shown in Fig. 1. Smart contracts on IoT blockchain networks automate digital agreements, in 
which the terms are coded into the contract and automatically executed when specified 
conditions are met during security investigations. The contracts ensure transparency and 
immutability, preventing after-deployment alterations to a decentralised network. Consensus 
protocols within the blockchain verify and validate execution, reinforcing security. With their 
automation and security features, smart contracts streamline complex interactions between IoT 
devices, providing efficient, tamper-proof management in networks ranging from IoT smart 
homes to large-scale industrial systems.  

Transaction representation is vital in fortifying security by capturing and presenting 
transactional data in a structured format. The format allows more efficient identification, 
analysis, and detection of patterns, anomalies, and potential security threats. Techniques such 
as data normalisation, feature extraction, and data aggregation contribute to a comprehensive 
comprehension of transactional behaviour within the network. This entails analysing 
transactional data derived from real-world IoT blockchain networks based on their properties. 
Near real-time (NRT) processing is preferred over real-time processing in using Artificial 
Intelligence (AI) to classify transactions in a blockchain network smart contracts. In the 
proposed system model, the NRT-AI security threat identifications are based on the adoption 
of machine learning algorithms based on clustering and classifications, as explained in the 
following subsections.  
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Building on the anomaly prediction architecture in Fig. 1, the threat identification model is 

regularly updated into the smart contract, as shown in Fig. 2. Based on the threat prediction 
output, user and data integrity checks are adopted only for normal transactions. Whereas the 
suspicious transactions will need to undergo further procedures for threat investigation. The 
problem lies in the potential vulnerabilities and threats that compromise user and data integrity, 
leading to the manipulation, corruption, or unauthorized access of sensitive information.  

 

 
 

Fig. 1. Update of threat identification model in blockchain smart contracts 
 
Two phases are needed for training and testing the security threat identification model, as 

shown in Fig. 3. Multiple dataset sources are utilised to ensure a diverse and representative 
sample. Phase 1 involves unlabelled and labelled datasets. Meanwhile, Phase 2 only uses the 
labelled dataset. Further details on each phase and dataset are described in the following 
subsections. 
 
 

3.1 Clustering Algorithms (Phase 1)  
Data clustering techniques are used to generate training data for the prediction models. By 
grouping transactions that exhibit similarities, labels can be assigned to the training dataset, 
indicating the specific cluster or group to which each transaction belonged, namely Normal or 
Anomaly. 
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Fig. 2. Phases for Security Threat Identification Model 
 

Several clustering algorithms were selected and trained, considering their capability to 
analyse transactional data, accommodate diverse datasets, handle noise and outliers, and 
provide valuable insights into transactional patterns within IoT blockchain networks. 
Specifically, k-means clustering is chosen for its simplicity and efficiency in grouping data 
points and hierarchical clustering for capturing the hierarchical structure of data and enabling 
the exploration of relationships among transactions. DBSCAN is valuable for identifying both 
hidden patterns and anomalies. Further descriptions of each algorithm are as follows: 

1. k-means Clustering: k-means is an extensively used unsupervised learning algorithm 
that aims to partition data points into k clusters based on their similarity [33]. It 
iteratively assigns data points to the nearest cluster centroid and updates centroid 
positions until convergence.  

2. Hierarchical Clustering: Hierarchical clustering is another unsupervised learning 
algorithm that constructs a hierarchy of clusters by iteratively merging or splitting 
clusters based on their similarity [34]. It can reveal the hierarchical structure of the 
data, which can effectively uncover relationships and dependencies among 
transactions in the IoT blockchain network. 

3. DBSCAN: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
is a density-based clustering algorithm that groups data points based on their density 
and connectivity [35]. It identifies core points that have enough neighbouring points 
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within a specified radius and expands clusters by connecting density-reachable points. 
DBSCAN is proficient in detecting clusters of various shapes and handling noisy data, 
making it suitable for analysing transactional patterns in the IoT blockchain network. 

4. GMM: The Gaussian Mixture model (GMM) is a probabilistic model that assumes 
data points are generated from a mixture of Gaussian distributions [36]. It estimates 
the parameters of these distributions to model the underlying data distribution. GMM 
can be applied to identify hidden patterns and anomalies within the transactional data 
of the IoT blockchain network. 

 
A total of 30,505 Ethereum blockchain transactions [37] were utilised for the ML 

clustering model. Data cleaning and preprocessing techniques were applied to the original 
dataset to ensure seamless analysis and compatibility. The Principal Component Analysis 
(PCA) [38] technique was employed as a preprocessing step while preserving as much 
information as possible to reduce dimensionality. This is achieved by transforming the original 
features into orthogonal components called ‘principal components’. These components are 
ordered based on their ability to capture the maximum variance in the data, with the first 
component capturing the most variance, followed by subsequent components in decreasing 
order. For k-means clustering, PCA is usually used as a preprocessing step. 

Furthermore, a data engineering technique based on feature engineering was applied to 
this dataset.  Feature engineering is the process of creating new features (attributes) from 
existing data to provide additional insights and improve the performance of machine learning 
models or analytical tasks. This technique generated two new features: (i) 
'Transaction_Frequency_To' and (ii) 'Transaction_Frequency_From'. These features are 
created to analyse and gain insights into both the recipient’s and sender’s transaction patterns 
and behaviours within the IoT blockchain network. Table 2 shows the attributes of the primary 
dataset.  

 
Table 2. Training Dataset attributes features description. 

Data attributes Description 
Block_no Series number in the chain of Blocks 
Transaction_hash Block hash value 
Transaction_From Sender transaction 
Transaction_To Recipients transaction 
TxnFee Captures transaction costs 
Value_OUT Transaction magnitude 
Transaction_Frequency_From Sender transaction patterns and behaviours 
Transaction_Frequency_To Recipient transaction patterns and behaviours 

 
3.2 Anomaly Prediction (Phase 2.1) 
Various classifiers have been proposed as predictive models to address security threat 
identification in diverse domains. For example, the Gradient Boosting algorithms ensemble 
learning technique iteratively combines weak learners to build a strong predictive model. It 
aims to minimise a loss function by sequentially g models focusing on misclassified instances. 
XGBoost is an optimised implementation of the Gradient Boosting algorithm with 
enhancements for improved speed and accuracy. It has exhibited effective security threat 
prediction capabilities across various applications [39] by analysing multiple features 
extracted from transactional data. Ensemble methods such as Random Forest and AdaBoost 
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also offered promising outcomes [40]. These models leverage multiple decision trees to make 
accurate predictions based on patterns observed in transactional data. A well-established 
machine learning framework such as ‘scikit-learn’ is employed to implement the predictive 
models. The predictive models will be trained using a subset of the dataset, validated using 
cross-validation techniques, and assessed using appropriate performance metrics such as 
accuracy, precision, recall, and F1 score. 

Integrating prediction models into the system architecture will enable continuous real-time 
transactional data analysis. Appropriate security measures will be activated if any security 
threats or anomalies are detected, such as alert notifications, access restrictions, or transaction 
rejection. Through the system model, nine classifier methods stated in Table 3 are compared. 
The model covers diverse approaches, including linear models, ensemble methods, distance-
based algorithms, and probabilistic classifiers to capture different aspects of the data and 
leverage their unique strengths for accurate security threat identification and performance 
optimisation. 
 

Table 3. Prediction Models Classifier Description 
No. Classifier Description 
1 Logistic Regression (LR) Establishes a relationship between a dependent binary variable 

and independent variables using a logistic function. 
2 

Random Forest (RF) 

An ensemble learning method that combines multiple decision 
trees to make predictions. Each tree is trained on a subset of data, 
and the final prediction is made by aggregating individual tree 
predictions. 

3 K-Nearest Neighbours 
(KNN) 

Classifies new instances based on the majority vote of their k 
closest neighbours in the feature space. A popular algorithm for 
pattern recognition and machine learning. 

4 

Naive Bayes  

Assumes conditional independence of features given the class 
label, often used in text classification and other domains. Despite 
its simple assumptions, it has shown promising results in text 
classification and other domains. 

5 Gradient Boosting 
Machines (GBM) 

Generalisation of Gradient Boosting for regression and 
classification problems using gradient descent. 

6 

AdaBoost 

Ensemble method that combines multiple weak classifiers to 
create a strong classifier by weighting misclassified samples. 
Each weak classifier is trained on weighted data, giving more 
emphasis to misclassified samples in subsequent classifiers. 

7 

Decision Trees (DT) 

Tree-based classifiers that partition the feature space based on 
attribute values for interpretability and versatility. Internal nodes 
represent attribute tests, while leaf nodes represent class labels. 
DT is widely used due to their interpretability and ability to 
handle different data types. 

8 
Linear Discriminant 
Analysis (LDA) 

Statistical method for dimensionality reduction and 
classification, aiming to maximise class separation by assuming 
Gaussian distributions and estimating class priors, means, and 
covariances. 

9 

Bagging 

Ensemble technique that builds multiple models by resampling 
training data with replacement. Each model is trained on a 
different bootstrap sample, and predictions are aggregated for 
the result. 
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A secondary dataset of 9,841 blockchain transactions [41] that contains labels of both 
fraudulent and valid transactions is used for anomaly prediction. This provides a realistic and 
challenging scenario for evaluating the effectiveness of the proposed security threat model.  
Upon data cleaning of this secondary dataset, a data engineering technique is used to derive a 
new feature, known as 'TxnFee, by calculating the difference between the 'total Ether sent' and 
'total Ether received' features. This new feature helps to capture the economic dimension of 
transactions, contributing to a more comprehensive understanding of the dataset and enhancing 
the effectiveness of our fraud detection and prevention models. Table 4 shows the attributes 
of the secondary dataset. 

Table 4. Validation Dataset attributes features description. 

Data attributes Description Training Dataset 
Matching 

Total_Transactions Series number in the chain of 
Blocks 

Block_no 

Transaction_hash Block hash value Transaction_hash 
Unique_Received_From_Addresses Sender transaction Transaction_From 
Unique_Sent_To_Addresses Recipient transaction Transaction_To 
Total_Ether_Received Captures transaction costs TxnFee 
Avg_Value_Received Transaction magnitude Value_OUT 
Total_Ether_Sent_Contracts Sender transaction patterns and 

behaviours 
Transaction_Frequency_Fr
om 

Total_Ether_Received_Contracts Recipient transaction patterns 
and behaviours 

Transaction_Frequency_To 

 
3.3 Model Testing and Implementation (Phase 2.2) 
The model testing and implementation are conducted using two cases: (i) unbalanced data, 
referring to the original source dataset, and (ii) balanced data, which is based on the modified 
dataset.  

The unbalanced data is based on the full original dataset, where it has been seen that the 
number of Cluster 0 transactions is significantly larger than Cluster 1. For a balanced data 
anomaly prediction analysis, a method called ‘Random Over-Sampling’ was employed. This 
method aims to mitigate the unbalanced dataset source by increasing the number of instances 
in the minority class through a random selection duplication process. As a result, classes have 
an equal representation, allowing the machine learning algorithms to learn more effectively 
from the minority class data. 

4. Performance Evaluation 
4.1 Clustering Results and Analysis 
Initially, the Elbow method [42] is applied to determine the optimal number of clusters in a 
dataset. As the WCSS (within-cluster sum of squares) measures cluster tightness, the “elbow” 
point in Fig. 4 shows that the optimal cluster count is two, referenced as (i) Cluster 0 and (ii) 
Cluster 1 in the following results. A majority of the blockchain transactions are in Cluster 0, 
which represents normal transaction behaviour. Meanwhile, the smaller size of Cluster 1 
indicates that these transactions exhibit different characteristics from the majority of 
blockchain transactions, which indicates anomaly transactions. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1997 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Elbow method to determine cluster size 
 
 

Additionally, the Silhouette Score [43] was used as a criterion to assess the quality of the 
clustering results using different numbers of clusters, and the Silhouette Score was computed 
for each configuration. To accomplish this, the ‘Silhouette’ considers both the average distance 
between samples within the same cluster (cohesion) and the average distance between samples 
of different clusters (separation). The Silhouette Score ranges from -1 to 1, with higher values 
indicating well-defined and well-separated clusters. Fig. 5 shows the Silhouette measurement 
results for the selected clustering algorithms specified in Section 3. where the x-axis in a 
Silhouette Score graph represents Silhouette Scores for diverse cluster configurations, while 
the y-axis denotes the corresponding number of clusters, aiding in the identification of an 
optimal cluster count based on the maximal Silhouette Score.  

Additionally, Fig. 6 illustrates the Cluster 0 (Normal) and Cluster 1 (Anomaly) 
distribution for the four clustering algorithms. K-mean clustering achieves a Silhouette score 
of 0.9835 with 30,504 data points in Cluster 0 and 199 data points in Cluster 1. Hierarchical 
Clustering has a Silhouette score of 0.9823 with 30,312 data points in Cluster 0 and 181 data 
points in Cluster 1. DBSCAN clustering has a Silhouette score of 0.9462 containing 30,664 
data points in Cluster 0 and 39 data points in Cluster 1. Meanwhile, GMM clustering has a 
score of 0.9836 with 30,514 data points in Cluster 0 and 189 data points in Cluster 1.  
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Fig. 5. Silhouette Measurement for (A) 2 clusters, (B) 3 clusters, (C) 4 clusters and (D) 5 clusters. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Fig. 6. Distribution of Cluster 0 (normal transactions) and Cluster 1 (anomaly transactions) for 
different ML clustering algorithms. 
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The summary results of the four clustering algorithms are presented in Table 5. It can be 
seen that all algorithms have relatively high Silhouette Scores, with GMM having the highest 
value. A score of 0.98 suggests that the data points within each cluster are similar to each other 
and well-separated from the data points in the other cluster. This indicates that the clustering 
algorithm successfully grouped the data points into distinct clusters based on their features or 
characteristics. In other words, the proposed ML-based clustering method successfully 
obtained a cluster that is reasonably similar to each other and well-separated from the data 
points in the other cluster. 

 
Table 5. Summary of ML Clustering Algorithms results 

Clustering algorithm Normal Data Points 
(Cluster 0) 

Suspicious Data Points 
(Cluster 1) 

Silhouette 
Score 

k-means 30,504 199 0.9835 
Hierarchical 30,312 181 0.9823 
DBSCAN 30,664 39 0.9462 

Gaussian Mixture 
Models (GMM)  30,514 189 0.9836 

 
Based on the clustering method, several key findings are summarised as follows: 

1. Distribution of Clusters: The results show that all clustering algorithms were able to 
identify two distinct clusters labelled as Cluster 0 and Cluster 1. The distribution of 
data points across these clusters varied among the algorithms. Notably, in the k-means 
and GMM clustering methods, Cluster 0 contains a significantly larger number of data 
points compared to Cluster 1, indicating an imbalance in cluster sizes. In contrast, the 
Hierarchical and DBSCAN clustering methods show a relatively smaller difference in 
cluster sizes. 

2. Separation of Clusters: The Silhouette scores indicate the separation and 
compactness of the clusters. Higher Silhouette scores closer to 1 suggest well-
separated clusters with high similarity within each cluster. In this case, all four 
clustering algorithms exhibit high Silhouette scores, ranging from 0.9462 to 0.9836. 
This indicates that the clusters obtained by each algorithm are distinct and well-
separated, reflecting the effectiveness of the algorithms in capturing the underlying 
patterns and structures within the dataset. 

3. Imbalance in Cluster Size: The clustering results reveal an imbalance in cluster sizes, 
particularly in the k-means and GMM clustering methods, where Cluster 0 contains a 
significantly larger number of data points compared to Cluster 1. This suggests that 
the majority of transactions or data points in the dataset exhibit similarities and form 
a larger cluster, while a smaller cluster represents a distinct subset of transactions or 
data points. 

4. Identification of Malicious Transactions: Clustering techniques can be utilised for 
identifying potentially malicious transactions or outlier data points. By examining the 
composition of the smaller clusters, such as Cluster 1 in this case, it is possible to 
identify transactions that deviate from the majority and may require further 
investigation as potential anomalies or fraudulent activities. The smaller cluster size 
indicates that these transactions are less common or exhibit different characteristics 
from the majority of transactions. 

5. Algorithm Selection: The choice of clustering algorithm depends on the specific 
requirements and characteristics of the dataset. In this case, all four algorithms, 
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namely k-means, Hierarchical, DBSCAN, and GMM clustering, demonstrate good 
clustering results with high Silhouette scores. 

6. Potential Applications: The clustering results have implications for various 
applications. In the context of IoT blockchain networks, the identified clusters can 
provide insights into the grouping of transactions based on their characteristics, aiding 
in anomaly prediction, fraud identification, and security threat mitigation. The results 
can also inform the design and optimisation of network protocols, resource allocation, 
and performance enhancements based on the characteristics of different clusters. 

Overall, the clustering results highlight the effectiveness of the applied algorithms in 
identifying distinct clusters, capturing patterns within the dataset, and enabling further analysis 
for various applications related to security, performance, and optimisation in IoT blockchain 
networks. 

 

4.2 Prediction Results and Analysis 

For the anomaly prediction performance evaluation, the following common ML performance 
metrics were used:  

• Accuracy measures the overall correctness of a classification model by calculating the 
ratio of correctly predicted instances to the total number of instances [44]. 
 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 … (1) 
• Precision assesses the model's ability to correctly identify positive instances out of the 

total instances predicted as positive [45]. 
 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 … (2) 
• Recall measures the model's ability to correctly identify positive instances out of the 

total actual positive instances [46].   
Recall = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 … (3) 

• F1-measure [47], represents a harmonic mean of precision, and recall provides a 
balanced evaluation of the model's performance. These evaluation metrics have been 
widely used and studied in the field of machine learning. 
 

F1-measure = 2∗(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

 … (4) 
 

4.2.1 Prediction from Unbalanced Data 

The performance evaluation of classifiers and clustering methods for the unbalanced data, as 
described in Section 3.3, is shown in Table 6 until Table 9, where the highest performance 
metrics are highlighted for each method.  

For k-means and GMM clustering, the Naive Bayes classifier stood out with a higher 
accuracy of 0.8330, indicating better overall performance compared to the other models. Other 
classifiers demonstrated a lower accuracy score implying that these models struggle to 
effectively differentiate between positive and negative classifications. On the other hand, 
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hierarchical-based and DBSCAN prediction models exhibited varying performance. A 
mixture of LDA, LR and Naïve Bayes has the highest performance for hierarchical clustering, 
while KNN, Naïve Bayes and GBM for DBSCAN clustering. 

Table 6. k-means clustering prediction model results for the Unbalanced data 

 

Table 7. Hierarchical clustering prediction model results for the Unbalanced data 

 

Table 8. DBSCAN clustering prediction model results for the Unbalanced data 

 

No. Classifiers Accuracy Precision Recall F1-measure 

1 Logistic Regression 
(LR) 0.6957 0.01 0.01 0.01 

2 Random Forest (RF) 0.6957 0.01 0.01 0.01 

3 K-Nearest Neighbours 
(KNN) 0.6957 0.01 0.01 0.01 

4 Naïve Bayes 0.8267 0.89 0.25 0.39 

5 Gradient Boosting 
Machines (GBM) 0.6957 0.01 0.01 0.01 

6 AdaBoost 0.6957 0.01 0.01 0.01 
7 Decision Tree (DT) 0.6957 0.01 0.01 0.01 
8 LDA 0.5904 0.10 0.10 0.10 
9 Bagging 0.6957 0.01 0.01 0.01 

No. Classifiers Accuracy Precision Recall F1-measure 

1 Logistic Regression 
(LR) 0.3060 0.24 1.00 0.39 

2 Random Forest (RF) 0.3173 0.24 0.99 0.39 

3 K-Nearest Neighbours 
(KNN) 0.3173 0.24 0.99 0.39 

4 Naïve Bayes 0.5214 0.31 0.95 0.47 

5 Gradient Boosting 
Machines (GBM) 0.3173 0.24 0.99 0.39 

6 AdaBoost 0.3173 0.24 0.99 0.39 
7 Decision Tree (DT) 0.3173 0.24 0.99 0.39 
8 LDA 0.7416 0.41 0.38 0.39 
9 Bagging 0.3171 0.24 0.99 0.39 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.7443 0.09 0.02 0.03 

2 Random Forest (RF) 0.7438 0.08 0.02 0.03 
3 K-Nearest Neighbours 

(KNN) 
0.7511 0.07 0.01 0.02 

4 Naïve Bayes 0.6713 0.32 0.44 0.37 
5 Gradient Boosting 

Machines (GBM) 
0.2548 0.17 0.63 0.27 

6 AdaBoost 0.6986 0.04 0.02 0.02 
7 Decision Tree (DT) 0.7444 0.08 0.02 0.03 
8 LDA 0.2573 0.17 0.62 0.27 
9 Bagging 0.3171 0.24 0.99 0.39 
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Table 9. GMM clustering prediction model results for the Unbalanced data 

 

However, for this unbalanced dataset focusing on a minority class, the Recall metric is 
prioritised because it measures the proportion of correctly identified anomalies among all the 
actual anomalies, ensuring effective detection of the minority class. Accuracy can be 
misleading due to class imbalance, and Precision may focus on false positives, potentially 
missing actual anomalies. F1 score offers a fair evaluation, but Recall remains most suitable 
for accurate prediction of anomalies [47].  Thus, the most optimal method for unbalanced data 
is the combination of hierarchical clustering and logical regression classifier combination, as 
shown in Table 10.  
 

Table 10. Summary of optimal classifiers and clustering methods for Unbalanced data 
Unbalanced 

Data Accuracy Precision Recall F1-measure 

k-means 
clustering 

0.8267 
(Naïve Bayes) 

0.89 
(Naïve Bayes) 

0.25 
(Naïve Bayes) 

0.39 
(Naïve Bayes) 

Hierarchical 
clustering 

0.7416 
(LDA) 

0.41 
(LDA) 

1.00 
(LR) 

0.47 
(Naïve Bayes) 

DBSCAN 
clustering 

0.7511 
(KNN) 

0.32 
(Naïve Bayes) 

0.63 
(GBM) 

0.37 
(Naïve Bayes) 

GMM  
clustering 

0.8267 
(Naïve Bayes) 

0.89 
(Naïve Bayes) 

0.29 
(LDA) 

0.39 
(Naïve Bayes) 

 

4.2.2 Prediction from Balanced Data 

Next, the performance evaluation of classifiers and clustering methods for the modified 
balanced data, as described in Section 3.3, is shown in Table 11 until Table 14, where 
similarly, the highest performance metrics are highlighted for each method. Similar to 
unbalanced data, Naïve Bayes shows the best performance for k-means and GMM clustering. 
Meanwhile, LDA and RF give the highest performance for hierarchical clustering, while KNN 
and Naïve Bayes for DBSCAN clustering. 
 
 
 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.6962 0.01 0.01 0.01 

2 Random Forest (RF) 0.6962 0.01 0.01 0.01 
3 K-Nearest Neighbours 

(KNN) 
0.6962 0.01 0.01 0.01 

4 Naïve Bayes 0.8267 0.89 0.25 0.39 
5 Gradient Boosting 

Machines (GBM) 
0.7652 0.01 0.00 0.00 

6 AdaBoost 0.6962 0.01 0.01 0.01 
7 Decision Tree (DT) 0.6962 0.01 0.01 0.01 
8 LDA 0.3696 0.12 0.29 0.17 
9 Bagging 0.6962 0.01 0.01 0.01 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  2003 

Table 11. k-means clustering prediction model results for the Balanced data 

 

Table 12. Hierarchical clustering prediction model results for the Balanced data 

 

Table 13. DBSCAN clustering prediction model results for the Balanced data 

 

 

 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.6957 0.01 0.01 0.01 

2 Random Forest (RF) 0.6957 0.01 0.01 0.01 
3 K-Nearest Neighbours 

(KNN) 
0.6957 0.01 0.01 0.01 

4 Naïve Bayes 0.8330 1.00 0.25 0.40 
5 Gradient Boosting 

Machines (GBM) 
0.6957 0.01 0.01 0.01 

6 AdaBoost 0.6957 0.01 0.01 0.01 
7 Decision Tree (DT) 0.6957 0.01 0.01 0.01 
8 LDA 0.5904 0.10 0.10 0.10 
9 Bagging 0.6957 0.01 0.01 0.01 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.7412 0.41 0.38 0.39 

2 Random Forest (RF) 0.3173 0.24 0.99 0.39 
3 K-Nearest Neighbours 

(KNN) 
0.6962 0.01 0.01 0.01 

4 Naïve Bayes 0.1669 0.18 0.75 0.29 
5 Gradient Boosting 

Machines (GBM) 
0.3173 0.24 0.99 0.39 

6 AdaBoost 0.3173 0.24 0.99 0.39 
7 Decision Tree (DT) 0.3173 0.24 0.99 0.39 
8 LDA 0.7436 0.41 0.37 0.39 
9 Bagging 0.3173 0.24 0.99 0.39 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.2572 0.17 0.63 0.27 

2 Random Forest (RF) 0.3469 0.16 0.48 0.25 
3 K-Nearest Neighbours 

(KNN) 
0.7489 0.07 0.01 0.02 

4 Naïve Bayes 0.1669 0.18 0.75 0.29 
5 Gradient Boosting 

Machines (GBM) 
0.2548 0.17 0.63 0.27 

6 AdaBoost 0.2548 0.17 0.63 0.27 
7 Decision Tree (DT) 0.3032 0.18 0.63 0.28 
8 LDA 0.2573 0.17 0.62 0.27 
9 Bagging 0.2554 0.17 0.63 0.27 
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Table 14. GMM clustering prediction model results for the Balanced data 

 

Table 15 summarises the optimal combination of classifiers and clustering methods for 
balanced data. It can be seen that the GMM clustering method paired with the Naïve Bayes 
classifier is a favourable choice, for overall ML performance metrics. In contrast to the 
unbalanced data, Recall is no longer a dominant performance criterion for the balanced data. 

Table 15. Summary of optimal classifiers and clustering methods for Balanced data 
Unbalanced 

Data Accuracy Precision Recall F1-measure 

k-means 
clustering 

0.8330 
(Naïve Bayes) 

1.00 
(Naïve Bayes) 

0.25 
(Naïve Bayes) 

0.40 
(Naïve Bayes) 

Hierarchical 
clustering 

0.7436 
(LDA) 

0.41 
(LDA) 

0.99 
(RF) 

0.29 
(RF) 

DBSCAN 
clustering 

0.7489 
(KNN) 

0.18 
(Naïve Bayes) 

0.75 
(Naïve Bayes) 

0.29 
(Naïve Bayes) 

GMM  
clustering 

0.8330 
(Naïve Bayes) 

1.00 
(Naïve Bayes) 

0.63 
(LDA) 

0.40 
(Naïve Bayes) 

 

4.2.3 Overall Observations 

The clustering results exhibited the successful grouping of data points into distinct clusters 
based on their distinctive attributes and characteristics. However, discernible disparities 
surfaced in terms of cluster distribution, inter-cluster separation, and cluster size imbalance. 
With respect to cluster distribution, both k-means and Gaussian Mixture clustering manifested 
seamless performances, with the majority of data points being assigned to Cluster 0. In contrast, 
DBSCAN clustering yielded a more balanced distribution, wherein a relatively smaller number 
of data points were allocated to Cluster 1. Hierarchical clustering likewise demonstrated a 
balanced distribution, albeit with a larger number of data points encompassed within Cluster 
1. These findings imply that DBSCAN clustering and Hierarchical clustering may be better 
suited for scenarios necessitating balanced cluster sizes. 

 

 

No. Classifiers Accuracy Precision Recall F1-measure 
1 Logistic Regression 

(LR) 
0.7060 0.01 0.00 0.00 

2 Random Forest (RF) 0.6962 0.01 0.01 0.01 
3 K-Nearest Neighbours 

(KNN) 
0.6962 0.01 0.01 0.01 

4 Naïve Bayes 0.8330 1.00 0.25 0.40 
5 Gradient Boosting 

Machines (GBM) 
0.6962 0.01 0.01 0.01 

6 AdaBoost 0.6962 0.01 0.01 0.01 
7 Decision Tree (DT) 0.6962 0.01 0.01 0.01 
8 LDA 0.2569 0.17 0.63 0.27 
9 Bagging 0.6962 0.01 0.01 0.01 
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Moreover, based on the achieved anomaly prediction results, Table 16 summarises the 
preferred methods for precision and recall in both balanced and unbalanced data scenarios. 

Table 16. Summary of preferred prediction algorithms with different datasets 
Data Scenario Preferred for Precision Preferred for Recall 

Balanced Data Naïve Bayes Linear Discriminant Analysis 

Unbalanced Data Naïve Bayes Logistic Regression 

 
According to the findings, the Naïve Bayes method consistently stands out in terms of 

precision, regardless of the data scenario. It consistently achieves higher precision values 
compared to other methods. For the Recall metric, Logistic Regression (LR) offers the best 
performance for unbalanced data, while LDA gives the best performance for balanced data 
scenarios of the proposed system model. LR estimates conditional probabilities, which makes 
it particularly suitable for identifying rare events that are suitable for unbalanced data. 

The consistent superiority of Naïve Bayes for both unbalanced and balanced data scenarios 
is due to its probabilistic approach and feature independence assumption. Naïve Bayes utilises 
Bayes' theorem to estimate the probability of a given class label based on the observed features. 
This method is effective even with limited training data and is resilient against irrelevant 
features. Therefore, it can effectively identify patterns and characteristics of fraudulent 
activities or abnormal behaviour, resulting in higher precision in detecting positive instances.  

Based on the overall results analysis, it is recommended to utilise balanced data when 
building prediction models to enhance network security and performance in IoT blockchain 
networks. Balanced data allows the models to learn from a more representative distribution of 
positive and negative classes, leading to better generalisation and improved performance. 
Although working with balanced data may require additional efforts in data preprocessing and 
balancing techniques, the resulting models are more likely to provide reliable predictions and 
be more effective in real-world scenarios. 

5. Conclusion 
In this study, we proposed an innovative approach that leverages advanced techniques in data 
analysis to bolster security measures and optimise performance in IoT blockchain networks. 
The proposed model addresses the multifaceted challenges associated with security 
vulnerabilities and performance limitations in these networks. This work has demonstrated the 
effectiveness of combining advanced data analysis techniques with machine learning models 
to optimise the functionality and protection of IoT blockchain networks. The study has also 
highlighted the importance of selecting appropriate clustering algorithms and features, 
balancing data, and exploring alternative classification techniques to further enhance the 
performance of prediction models. Future research directions include investigating the 
scalability and efficiency of the proposed approach in larger and more complex IoT blockchain 
networks, addressing privacy concerns, and integrating anomaly prediction techniques in real-
time.  
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