• 제목/요약/키워드: intracellular enzyme

검색결과 326건 처리시간 0.054초

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권4호
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

Anti-inflammatory Effects of Quercetin and Vitexin on Activated Human Peripheral Blood Neutrophils - The effects of quercetin and vitexin on human neutrophils -

  • Nikfarjam, Bahareh Abd;Hajiali, Farid;Adineh, Mohtaram;Nassiri-Asl, Marjan
    • 대한약침학회지
    • /
    • 제20권2호
    • /
    • pp.127-131
    • /
    • 2017
  • Objectives: Polymorphonuclear neutrophils (PMNs) constitute the first line of defense against invading microbial pathogens. Early events in inflammation involve the recruitment of neutrophils to the site of injury or damage where changes in intracellular calcium can cause the activation of pro-inflammatory mediators from neutrophils including superoxide generation, degranulation and release of myeloperoxidase (MPO), productions of interleukin (IL)-8 and tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), and adhesion to the vascular endothelium. To address the anti-inflammatory role of flavonoids, in the present study, we investigated the effects of the flavonoids quercetin and vitexin on the stimulus-induced nitric oxide (NO), $TNF-{\alpha}$, and MPO productions in human neutrophils. Methods: Human peripheral blood neutrophils were isolated, and their viabilities were determined by using the Trypan Blue exclusion test. The polymorphonuclear leukocyte (PMNL) preparations contained more than 98% neutrophils as determined by morphological examination with Giemsa staining. The viabilities of cultured neutrophils with various concentrations of quercetin and vitexin ($1-100{\mu}M$) were studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI) medium, pre-incubated with or without quercetin and vitexin ($25{\mu}M$) for 45 min, and stimulated with phorbol 12-myristate 13-acetate (PMA) ($10^{-7}M$). NO production was carried out through nitrite determination by using the Griess method. Also, the $TNF-{\alpha}$ and the MPO productions were measured using enzyme-linked immunosorbent assay (ELISA) kits and MPO assay kits. Results: Neutrophil viability was not affected up to a concentration of $100{\mu}M$ of quercetin or vitexin. Both quercetin and vitexin significantly inhibited $TNF-{\alpha}$, NO, and MPO productions in human neutrophils (P < 0.001). Conclusion:The present study showed that both quercetin and vitexin had significant anti-inflammatory effects. Thus, treatment with either quercetin or vitexin may be considered as a therapeutic strategy for treating patients with neutrophil-mediated inflammatory diseases.

Tat-mediated Protein Transduction of Human Brain Pyridoxine-5-P Oxidase into PC12 Cells

  • Kim, So-Young;An, Jae-Jin;Kim, Dae-Won;Choi, Soo-Hyun;Lee, Sun-Hwa;Hwang, Seok-Il;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Park, Jin-Seu;Eum, Won-Sik;Lee, Kil-Soo;Choi, Soo-Young
    • BMB Reports
    • /
    • 제39권1호
    • /
    • pp.76-83
    • /
    • 2006
  • Pyridoxine-5-P oxidase catalyses the terminal step in the biosynthesis of pyridoxal-S-P, the biologically active form of vitamin $B_6$ Which acts as an essential cofactor. Here, a human brain pyridoxine-5-P oxidase gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-pyridoxine-5-P oxidase fusion protein. Expressed and purified Tat-pyridoxine-5-P oxidase fusion protein transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-pyridoxine-5-P oxidase protein showed catalytic activity and was stable for 48 h. Moreover, the formation of pyridoxal-5-P was increased by adding exogenous Tat-pyridoxine-5-P oxidase to media pre-treated with the vitamin $B_6$ precursor pyridoxine. In addition, the intracellular concentration of pyridoxal-S-P was markedly increased when Tat-pyridoxal kinase was transduced together with Tat-pyridoxine-5-P oxidase into cells. These results suggest that the transduction of Tat-pyridoxine-5-P oxidase fusion protein presents a means of regulating the level of pyridoxal-5-P and of replenishing this enzyme in various neurological disorders related to vitamin $B_6$.

와송이 고지방 식이로 유도된 비만 쥐의 간내 지질 및 항산화 대사에 미치는 영향 (Effects of Water Extract from Orostachys japonicus on Lipid and Antioxidant Metabolism in the Liver of Obese Mice)

  • 이형선;김수환
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.515-521
    • /
    • 2019
  • 본 연구는 고지방 식이로 유발된 비만 모델의 지질 및 항산화 관련 효소의 대사에 대하여 와송 열수 추출물의 섭취를 통한 효과를 확인하였다. 정상군을 제외하고 나머지 군은 8주 동안 고지방식이를 공급하여 비만 상태로 유도하였으며, 9주에서 14주까지 고지방식이에 와송 열수 추출물이 2.5%, 5% 첨가된 식이를 자유 급식하였다. 그 결과, 고지방 식이군 대비 와송 추출물 섭취군에서 간과 폐의 무게가 감소되었으며, H&E 염색상에서도 lipid droplet이 현저하게 감소되는 것을 관찰할 수 있었다. 또한, 간조직내의 총 콜레스테롤과 중성지방과 같은 지질 함량이 유의성 있게 줄어들었다. 와송 추출물의 항산화제로서의 능력을 확인한 결과 DPPH 라디컬 소거능의 활성을 증가하였고, ROS 형성량은 탁월하게 감소되었다. 산화스트레스를 감소시키는 SOD와 CAT와 같은 항산화 효소의 활성이 와송 추출물의 고농도 섭취군에서 정상군에 근접하게 회복되었다. 결론적으로 와송 추출물의 섭취는 간내 지질대사를 조절하고 항산화 효소를 활성화시켜 비만 치료를 위한 생리활성물질로 유용하게 활용 가능할 것으로 생각된다.

Atropine, Phentolamine과 Propranolol이 활성화된 다형핵 백혈구에서의 칼슘 흡수, $O_2-$ 생성 및 식작용에 미치는 효과 (Effects of Atropine, Phentolamine and Propranolol on Calcium uptake, Superoxide generation and Phagocytic activity in activated PMN Leukocytes)

  • 이정수;한은숙;이광수
    • 대한약리학회지
    • /
    • 제24권1호
    • /
    • pp.83-92
    • /
    • 1988
  • 세포질 내 칼슘 농도의 증가는 다형핵 백혈구의 산화성 대사를 자극하는 주요 인자로 여겨지고 있다. 활성화된 다형핵 백혈구로부터 lysosomal enzyme의 유리는 세포내 cyclic nucleotide농도에 따라 조절될 수 있지만 신경전달물질과 ${\beta}$-아드레날린 또는 무스카린성 수용체의 결합에 따른 그밖의 반응은 아직도 분명하지 않다. 덧붙여, ${\alpha}$-아드레날린성 수용체의 중개에 의한 다형핵 백혈구의 기능은 알려져 있지 않다. Atropine, phentolamine과 propranolol은 활성화된 다형핵 백혈구의 칼슘흡수, superoxide 생성, NADPH oxidase 활성도 그리고 식작용을 억제하였으며, 이에 반하여 carbachol과 isoproterenol은 활성화된 세포의 반응을 약간 더 자극하였다. Carbachol또는 isoproterenol 의하여 항진된 superoxide 생성은 각각 그들의 길항제인 atropine과 propranolol 의하여 억제되었다. 활성화된 다형핵 백혈구의 반응은 chlorpromazine, verapamil과 dantrolene에 의하여 억제되었으나 lithium에 의 하여 약긴 항진되었다. 한편 chlorpromazine과 dibucaine은 NADPH oxidase 활성도에 영향을 주지 않았다. Atropine, phentolamine과 propranolol은 칼슘에 의존적인 식작용을 억제 하였다. 이상의 결과로부터 atropine, phentolamine과 propranolol은 칼슘 유입을 억제하고 자율 신경계의 수용체와 연관이 있는 NADPH oxidase계에 직접 작용함으로써 활성화된 다형핵 백혈구로부터 superoxide 생성을 억제할 것으로 시사되었다.

  • PDF

Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

  • Das, Jayeeta;Samadder, Asmita;Das, Sreemanti;Paul, Avijit;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA) and its poly (lactide-co-glycolide) (PLGA) nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA) + benzo[a]pyrene (BaP)]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA) were determined by using transmission electron microscopy (TEM), and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA) as a target were analyzed by using conventional circular dichroism (CD) and melting temperature (Tm) profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA); the ability of NdBA to cross the blood-brain barrier (BBB) was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS) data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater chemoprotective potential against lung cancer.

Catalase 첨가에 따른 돼지 정액 동결 및 융해 후 생존 정자에서 Hydrogen Peroxide의 감소 (The Reduction of Hydrogen Peroxide in Viable Boar Sperm Cryopreserved in the Presence of Catalase)

  • 김수희;이영준;강태운;김용준
    • 한국임상수의학회지
    • /
    • 제28권1호
    • /
    • pp.13-19
    • /
    • 2011
  • 요 약: 정액 동결 과정은 활성산소종의 생성을 유발하며, 생성된 활성산소종은 정자의 손상을 일으키는 것으로 알려져 있다. 따라서 본 연구의 목적은 동결 과정 중 항산화 효소 중 하나인 catalase (CAT)를 첨가함으로써 융해 후 정자의 기능과 활성산소종의 수준에 미치는 효과를 알아보고자 하였다. 5마리 돼지에서 채취한 정액은 0 (대조군), 200, 400 U/mL CAT가 첨가되어 있는 동결 희석액으로 각각 동결하였다. 융해 후, 정자 운동성, 생존성, 정상 형태율, 형질막 온전성, 미토콘드리아 기능, 세포내 ROS를 평가하였다. CAT는 400 U/mL의 농도에서 전체 정자 운동성을 향상시켰지만 (P < 0.05), 전진 운동성, 생존성, 기형율, 형질막 온전성, 미토콘드리아 기능의 향상을 나타내지 않았다. 활성산소종의 평가에서, CAT는 융해된 생존 정자의 ${\cdot}O_2$의 감소에는 효과를 나타내지 않은 반면 $H_2O_2$를 감소시켰다(P < 0.05). 결론으로 CAT는 동결 및 융해된 정자의 질을 향상시키는 데 큰 효과를 나타내진 않았지만 생존 정자에서 $H_2O_2$을 제거함로써 생존정자의 산화적 손상을 감소시킬 수 있으리라 판단된다.

Protective effects skin keratinocyte of Oenothera biennis on hydrogen peroxide-induced oxidative stress and cell death via Nrf2/Ho1 pathway.

  • Lee, Seung Young;Jung, Ji Young;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin-Woo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.103-103
    • /
    • 2018
  • Oenothera biennis, commonly known as evening primrose, a potential source of natural bioactive substances: flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of pharmacological functions. However, whether extract prepared from aerial part of O. biennis (APOB) protects skin against oxidative stress remains unknown. To investigate the protective effects of APOB against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocytes. Our results revealed that treatment with APOB prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased viability, and the highest DPPH radical-scavenging activities and reducing power of HaCaT cells. APOB also effectively attenuated H2O2-induced comet tail formation and inhibited the $H_2O_2$-induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, APOB exhibited scavenging activity against intracellular reactive oxygen species (ROS) accumulation and restored the mitochondrial membrane potential loss by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase (PARP), a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with APOB. Furthermore, APOB increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, APOB is able to protect HaCaT cells from $H_2O_2$-induced DNA damage and cell death through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nri2/HO-1 signaling pathway.

  • PDF

치매병태(癡呆病態)모델에서 천마(天麻)의 신경세포(神經細胞) 손상(損傷) 보호효과(保護效果) (Protective Effect of Gastrodia Elata on Neuronal Cell Damage in Alzheimer's Disease)

  • 정영수;강재현;박세환;권영미;김근우;구병수
    • 동의신경정신과학회지
    • /
    • 제21권2호
    • /
    • pp.125-140
    • /
    • 2010
  • Objectives : The purpose of this study is to examine from various angles the protective effect of Gastrodia elata Blume (GEB) against nerve cell death induced by $\beta$-amyloid by using the cell line SH-SY5Y, which is commonly utilized for toxicity testing in nerve cells, and to find out its mechanism of action. Methods : To begin with, as a result of assessing the rate of cell survival by employing MTT reduction assay, the treatment with $\beta$-amyloid at different concentrations caused cytotoxicity, which was inhibited by preprocessing GEB extract. In addition, after $\beta$-amyloid was processed with the cell SH-SY5Y, apoptosis progressed, which was reduced effectively by processing GEB extract. Results : When cytotoxicity was caused by using hydrogen peroxide, a representative ROS, in order to examine the antioxidant effect of GEB, its protective effect was also observed. Apart from ROS, reactive nitrogen species (RNS) are also known to play a crucial role in nerve cell death. The treatment with the NO donor SNAP increased the production of nitric oxide and the expression of iNOS, which was also inhibited by GEB extract. Meanwhile, as an attempt to find out the mechanism of action explaining the antioxidant effect, the intracellular antioxidant enzyme expressions were measured by RT-PCR, which showed that GEB extract increased the expressions of heme oxygenase-1, GAPDH and $\gamma$-glutamate cysteine ligase. Lastly, GEB extract had a protective effect against impaired memory induced by scopolamine in animal models (in vivo). Conclusions : These findings indicate that GEB has a protective effect against the death of cranial nerve cells, suggesting possibilities for the prevention and treatment of AD.

생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과 (Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells)

  • 박충무
    • 생명과학회지
    • /
    • 제28권1호
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol은 alfalfa에서 주로 발견되는, 식물계에 많이 분포하고 있는 flavone으로 전통의학에서 소화불량, 천식, 비뇨기계 이상의 치료에 사용되어 왔다. 최근의 연구에서는 항염증 효과가 있는 것으로 밝혀졌으나 항산화 효과에 대한 분석은 없었다. 본 연구에서는 chrysoeriol의 항산화 효과와 그 분자적 기전을 RAW 264.7 cell에서 세포생존율, reactive oxygen species (ROS)와 Western blot분석을 통해 알아보고자 하였다. Chrysoeriol은 lipopolysaccharide(LPS)에 의해 발생한 ROS를 세포독성없이 농도의존적으로 제거하였다. 그리고 항산화효과를 보이는 2상 효소 중 하나인 heme oxygenase (HO)-1의 발현을 강하게 유도하였고, 그와 동시에 전사인자인 Nrf2의 핵내 이동도 촉진하는 것으로 밝혀졌다. 특히, 산화스트레스에 대한 세포내 산화환원항상성 유지에 중요한 역할을 하고 있는 것으로 알려진 mitogen activated protein kinase (MAPK)와 phosphoinositide 3-kinase (PI3K)의 분석결과, chrysoeriol은 extracellular signal regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK)와 p38의 인산화를 통해 HO-1의 발현을 유도하는 것으로 나타났다. HO-1에 의한 항산화 효과를 확인하기 위하여 chrysoeriol을 전처리한 후 t-BHP에 의한 산화 스트레스에 세포를 노출시킨 결과, chrysoeriol 처리에 의해 세포사멸이 줄어드는 것을 확인하였고, HO-1의 유도제와 억제제의 처리에 따라 세포생존율 또한 조절되는 것을 확인할 수 있었다. 따라서, chrysoeriol은 HO-1의 발현을 유도하여 항산화 효과를 높이고 이것은 Nrf2/MAPK 신호전달 체계에 의한다는 것을 알 수 있었다.