• Title/Summary/Keyword: intracellular calcium concentration

Search Result 208, Processing Time 0.037 seconds

Regulation of $Ca^{2+}$ Signaling in Pulmonary Hypertension

  • Firth, Amy L.;Won, Jun Yeon;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of $[Ca^{2+}]_{cyt}$ contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension.

Immunoreactivity of Calcium-Binding Proteins in the Central Auditory Nervous System of Aged Rats

  • Hong, Seok-Min;Chung, Seung-Young;Park, Moon-Sun;Huh, Young-Buhm;Park, Moon-Suh;Yeo, Seung-Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • Objective : While many factors contribute to aging, changes in calcium homeostasis and calcium related neuronal processes are likely to be important. High intracellular calcium is toxic to cells and alterations in calcium homeostasis are associated with changes in calcium-binding proteins, which confine free $Ca^{2+}$. We therefore assayed the expression of the calcium binding proteins calretinin and calbindin in the central auditory nervous system of rats. Methods : Using antibodies to calretinin and calbindin, we assayed their expression in the cochlear nucleus, superior olivary nucleus, inferior colliculus, medial geniculate body and auditory cortex of young (4 months old) and aged (24 months old) rats. Results : Calretinin and calbindin staining intensity in neurons of the cochlear nucleus was significantly higher in aged than in young rats (p<0.05) The number and staining intensity of calretinin-positive neurons in the inferior colliculus, and of calbindin-positive neurons in the superior olivary nucleus were greater in aged than in young rats (p<0.05). Conclusion : These results suggest that auditory processing is altered during aging, which may be due to increased intracellular $Ca^{2+}$ concentration, consequently leading to increased immunoreactivity toward calcium-binding proteins.

Calcium Movement in Carbachol-stimulated Cell-line (Calcium수송기전에 미치는 Carbachol의 영향)

  • Lee, Jong-Hwa
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.355-363
    • /
    • 1995
  • It has been well known that the intracellular calcium concentration $([Ca^{2+}]_i)$ in living cell is very sensitive to live or to survive, but the transmembrane system of calcium ion, especially mechanism of calcium ion movement in unexcitable state has been little elucidated. Though many proposed theories for calcium ion transport have been reported, it is still unclear that how could the sustained maintenance in cytosolic calcium level be done in cell. Since one of possible mechanisms of calcium transport may be related to the acetylcholine receptor-linked calcium channel, author performed experiment to elucidate this mechanism of calcium influx related to cholinergic receptor in ml muscarinic receptor-transfected RBL-2H3 cell-line. 1) The effects of carbachol both on calcium ion influx and on the secretion of hexosaminidase were respectively observed in the manner of time-related or concentration-dependent pattern in this model. 2) The effects of several metal cations on calcium transport were shown in carbachol-induced cell-line. 3) Atropine was administered to examine the relationship between cholinergic receptor and calcium ion influx in this model. 4) PMA (Phorbol 12-myristate 13-acetate) or PTx (Pertussis toxin) was respectively administered to examine the secondary mediator which involved pathway of calcium ion movement in carbachol-induced cell-line. The results of this experiments were as follows; 1) Carbachol significantly stimulated both the calcium influx and the secretion of hexosaminidase in the manner of the concentration-dependent pattern. 2) Atropine potently blocked the effects of carbachol in concentration-response manner. 3) Administered metal cations inhibited the calcium influx in carbachol-stimulated this model to the concentration-related pattern. 4) PMA did not inhibit carbachol-induced secretion of hexosaminidase, but blocked the calcium influx in this cell-line. 5) The suppression of carbachol-induced hexosaminidase secretion was shown in PTx-treated cell -line.

  • PDF

Acute Ethanol Reduces Calcium Signaling Elicited by K+ Depolarization in Cultured Cerebellar Granule Neurons

  • Kim, Jong-Nam
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • The effects of acute ethanol on the high K+ induced $Ca^{2+}}$ signals were examined from primary cultures of cerebellar granule neurons. $Ca^{2+}}$ signals were measured with Calcium Green-1 based microscopic video imaging. Because $Ca^{2+}}$ signal was low in most of granule neurons without stimuli, high KCI was used for depolarization. In most case, acute exposure to ethanol reduced the peak amplitude of the $Ca^{2+}}$ signals, induced by high K+, even though low concentration of ethanol(2~10mM) was used and the effects lasted more than 30min. In was also possible to see differences of ethanol inhibition, i.e. the temporal pattern of $Ca^{2+}}$ signal reductions and the strength of inhibition of $Ca^{2+}}$ signals in cerebellar granule neurons. These results indicate that low concentration of ethanol has diverse actions on the $Ca^{2+}}$ signals in cerebellar granule neurons.

  • PDF

Calcium Response of CHSE Cells Following Infection with Infectious Pancreatic Necrosis Virus (IPNV) (전염성 췌장 괴저 바이러스 감염에 따른 CHSE 세포의 칼슘 반응)

  • Kang, Kyung-Hee;Park, Kee-Soon;Lee, Chan-Hee;Lee, Chan-Hee
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.79-84
    • /
    • 1993
  • Infection of Chinook Salmon Embryo (CHSE) cells with IPNV resulted in a significant decrease in intracellular free calcium concentration ([$Ca^{2+}$]i) compared to mock-infected cells. The degree of the decrease in [Ca$^{2+}$]i was dependent on the amount of input virus, and treatment of IPNV-infected CHSE cells with metabolic inhibitors such as cyloheximide cordycepin partially reversed the decrease in [$Ca^{2+}$]i in IPNV-infected cells. Inactiation of PINV with UV also abolished IPNV-induced decrease in [$Ca^{2+}$]i. These data suggest an active role of IPNV in the decrease of [Ca$^{2+}$]i in the infected CHSE cells. The importance of the decrease in [$Ca^{2}$i] could be supported by the finding that the production of IPNV plaques increased in the cells treated with verapamil, a calcium influex blocker, and by lowering the concentration of extracellular calcium. Decreased production of IPNV plaques was observed by elevating the extracellular calcium. Thus, it is suggested that IPNV induced a decreased in [$Ca^{2+}$]i and the decrease in [$Ca^{2+}$]i may plan an importat role in efficient replication of IPNV.ation of IPNV.

  • PDF

Effects of $Ca^2+$ and Protein Kinase C on the Chick Myoblast Differentiation (Ca$^2+$ 및 Protein Kinase C가 배양한 계배근원세포의 분화에 미치는 영향)

  • 정기화;김세재;박정원;박영철;이정주
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • Alteration of intracellular calcium ion Concentration by adding of either calcium ionophore A23187 or EGTA in culture medium at 24 hr after cell plating resulted in remarkable changes in the progression of differentiation of chick embryo myoblast. When separated myoblast proteins using two-dimensional gel electrophoresis, synthesis patterns of several proteins changed upon the addition of either A23187 or EGTA. Treatment of A23187 and calciumactivated neutral protease at 24 hr after initial plating caused an increase in the rate of fusion compared to control culture. However, EGTA inhibited the myoblast fusion to a marked degree. A23187 treated at 24hr also increased the activity of protein kinase C during the fusionprogressed period. It seems that intracellular calcium ion plays an important role in the myoblast differentiation in vitro together with the protein kinase C and calcium-activated neutral protease.

  • PDF

Cytotoxicity of Mifepristone via Calcium Modulation In Human Prostate Cancer Cells (인간 전립선암세포에 있어서 칼슘조절을 통한 mifepristone의 세포독성효과)

  • Song, Hwi-June;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.892-898
    • /
    • 2009
  • MIF is a progesterone analogue and is known as a potent progesterone antagonist. Although MIF has been known to inhibit prostate cancer cell growth, its molecular mechanisms are not yet clear. In the present study, when the cells were treated for 2-4 days with 5-40 $\mu$M of MIF, the growth and viability of LNCaP cells were significantly decreased in a dose- and time-dependent manner. When the cells, cultivated in a normal 2 mM calcium concentration medium, were treated with 15 $\mu$M MIF for 1 day, the intracellular calcium level increased by 26% compared to the control. Similar results were also found in cells located in the calcium-free reaction buffer, indicating that MIF induced the increase of intracellular Ca$^{2+}$ levels, regardless of the presence of calcium in the surrounding medium. In the cells treated with various concentrations of MIF, the intracellular calcium levels increased in a dose dependent manner. Cells treated with MIF revealed typical early apoptotic signs, i.e., chromosome condensation and nuclei fragmentation. In cells treated with 40 11M MIF, Bcl-2 decreased to 19% of the control. The expression of Bax increased to almost 2 fold of the control. These results demonstrated very clearly that MIF treatment blocks the expression of Bcl-2 but stimulates the expression of Bax. According to the results of the present investigation, the apoptotic mechanism of MIF is triggered by intracellular modulation.

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF

Microvesicle Generation by Lipid Mediator in Erythrocytes (Lipid Mediator에 의한 적혈구 Microvesicle 생성에 대한 연구)

  • Chung, Seung-Min;Bae, Ok-Nam;Noh, Ji-Yoon;Kim, Su-Jin;Lim, Kyung-Min;Chung, Jin-Ho
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.397-402
    • /
    • 2006
  • Lipid mediator such as lysophosphatidic acid (LPA) plays an important role in inflammation and wound heating, has been recently reported to induce influx of extracellular calcium into erythrocytes. This elevation in intracellular calcium level may cause destruction of membrane asymmetry and procoagulant microvesicle formation. Thus, we investigated if the lipid mediator could induce microvesicle formation as a result of extracellular calcium influx in human erythrocytes. Treatment with lipid mediator to erythrocytes resulted in microvesicle generation In a concentration-, time-dependent manner. Microvesicles formed expressed procoagulant phosphatidylserine (PS) on their surface membrane significantly as well. LPA did not affect the band 3 phosphorylation which is involved in morphological change in erythrocytes. Pretreatment with suramin did not inhibit LPA-induced microvesicle generation, suggesting microvesicle generation was not receptor-dependent pathway. Depletion of intracellular ATP levels in erythrocytes was suggested to be one of the mechanism for these events.