• Title/Summary/Keyword: intracellular ${\beta}$-glucosidase

Search Result 12, Processing Time 0.027 seconds

Overproduction and Secretion of $\beta$-Glucosidase in Bacillus subtilis

  • Kim, Jeong-Hyun;Lee, Baek-Rak;Moo, young-Pack
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • Overproduction of intracellular ${\beta}$-glucosidase was attempted by modifying the promoter region of a ${\beta}$-glucosidase gene cloned from Cellulomonas fimi and expressing it in Bacillus subtilis DB 104. A strong engineered promoter, BJ27UΔ88, was fused to the ${\beta}$-glucosidase gene after removing its native promoter. An effective Shine-Dalgamo sequence (genel0 of phage T7) was inserted between the promoter and the ${\beta}$-glucosidase structural gene. The modified gene was overexpressed in B. subtilis and produced 1121.5 units of ${\beta}$-glucosidase per mg protein which is about $12\%$ of total intracellular protein. Secretion of overproduced intracellular ${\beta}$-glucosidase was attempted by using the signal sequence of the Bacillus endoglucanase gene as well as an in-frame hybrid protein of endoglucanase. The hybrid protein was normally secreted into the culture medium and still retained ${\beta}$-glucosidase activity.

  • PDF

Exploration of β-Glucosidase Activity of Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 젖산균의 β-glucosidase 활성 탐색)

  • Jang, Mi-Hee;Kim, Myoung-Dong
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • The ${\beta}$-glucosidase (E.C. 3.2.1.21) production capabilities of lactic acid bacteria isolated from a variety of kimchi (fermented vegetables) were examined. When grown in a medium containing cellobiose as carbon source, most lactic acid bacteria showed significantly higher intracellular levels of ${\beta}$-glucosidase than the extracellular levels. A maximum intracellular ${\beta}$-glucosidase activity of 3.7${\pm}$0.5 (unit/mg protein) was obtained in the case of Weissella cibaria KFRI88010 isolated from kimchi. The optimum reaction conditions for W. cibaria KFRI88010 ${\beta}$-glucosidase activity were pH 5.0 and ${37^{\circ}C}$, and addition of divalent cations to the reaction mixture resulted in a notable decrease in enzyme activity. The ${\beta}$-glucosidase activity was enhanced twofold when W. cibaria KFRI88010 was grown in a medium containing fructose as compared with to a medium containing glucose or cellobiose.

Simultaneous Expression of Pseudomonas sp. Endo-1,4$\beta$-Glucanase and $\beta$-1,4=Glucisidase Gene in Escherichia coli and Saccharomyces cerevisiae (Pseudomonas sp. Endo-1,4-$\beta$-Glucanase와 $\beta$-1,4-Glucosidase 유전자의 대장균 및 효모에서의 동시 발현)

  • Kim, Yang-Woo;Chun, Sung-Sik;Chung, Young-Chul;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.652-658
    • /
    • 1995
  • We attempted simultaneous expression of genes coding for endoglucanase and $\beta $-glucosidase from Pseudomonas sp. by using a synthetic two-cistron svstem in Escherichia coli and Saccharomyces cerevisiae. Two-cistron system, 5'--tac promoter-endoglucanase gene--$\beta $-glucosidase gene-- 3', 5'-tac promoter--$\beta $-glucosidase gene--endoglucanase gene--3' and 5'-tac promoter--endoglucanase gene--SD sequence--$\beta $-glucosidase gene--3, were constructed, and expressed in E. coli and S. cerevisiae. The E. coli and S. cerevisiae contained two-cistron system produced simultaneously endoglucanase and $\beta $-glucosidase. The recombinant genes contained the bacterial signal peptide sequence produced low level of endoglucanase and $\beta $-glucosidase in S. cerevisiae transformants: Approximately above 44% of two enzymes was localized in the intracellular fraction. The production of endoglucanase and $\beta $-glucosidase in veast was not repressed in the presence of glucose or cellobiose. The veast strain contained recombinant DNA with two genes hydrolyzed carboxvmethyl cellulose, and these endoglucanase and $\beta $-glucosidase degraded CMC synergistically to glucose, cellobiose and oligosaccharide. This result suggests the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.

  • PDF

β-Glucosidase Formation In Cellulomonas sp. (Cellulomonas sp.의 β-글루코시다아제 생성)

  • Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.225-234
    • /
    • 1976
  • To elucidate ${\beta}$-glucosidase formation on various carbon scurces by cellulolytic bact-eia, Cellulomonas sp. CS1-1, the strain was grown on Nutrient Yeast Broth, carboxymethyl cellulose, avicel and cellobiose using a Ouickfit FVIL fermentor operated in batch, and the growth characteristics on those substrates and ${\beta}$-glucosidase distribution of extra and intracellular enzyme components were studied. The results were: 1) ${\beta}$-glucosidase was always intracellular, and was formed under all growth conditions tested, ii) but levels of relative activities were higher when the culture was grown on cellobiose and on avicel, iii) the relative activities were always maximum during the growth phase of the organism irrespective of the substrate used.

  • PDF

Aspects of Cellulase Induction by Sophorose in Trichoderma reesei QM9414 (Trichoderma reesei QM9414의 sophorose에 의한 섬유소 분해효소 유도현상에 관하여)

  • 정종문;박희문;홍순우;하영칠
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • The aim of this investigation was to resolve the contradiction between the results of Sternberg and Mandels (1980, 1982)and those of Nisizawa et al., (1971) in cellulase induction by sophorose, and furthermore to study the conditional effects in sophorose-induced cellulase induction in Trichoderma reesei QM 9414. Sophorose could induce the synthesis of CMCase and ${\beta}-glucosidase$ simultaneously. Optimal induction medium by sophorose had the potassium citrate buffer solution of pH 3.0-4.0 for CMCase, but one of pH 5.0-6.0 for ${\beta}-glucosidase$. At this time, two different types of ${\beta}-glucosidase$ could be induced by sophorose: one was extracellular and had maximum at pH 5.0, the other was intracellular and had maximum activity at pH6.5. Induction study showed that $methyl-{\beta}-glucoside$ was not a true inducer of ${\beta}-glucosidase$ and that large ${\beta}-glucosidase$ induction could be obtained only by the addition of sophorose into the induction medium. Glucose repressed the induction of cellulase by sophorose. The repression of glucose could not be overcome by the addition of cyclic AMP into the induction medium.

  • PDF

감귤류 변패의 원인균인 Penicillium sp.-L4가 생성하는 식물세포벽 분해효소의 작용양상

  • 김무성;최영길
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.115-120
    • /
    • 1997
  • Penicillium sp.-L4, a causative fungus of rot in citrus fruits, was isolated and its mode of hydrolytic enzyme production was investigated. Carboxymethylcellulase (CMCase), polygalacturonase(PGase), extra- & intra-cellular $\beta$-glucosidase and cellobiase were produced drastically by addition of substrates in minimal media. Production of the hydrolytic enzymes were induced efficiently by cellobiose and cellooligosaccharides which were the products of cellulose hydrolysis, but repressed by addition of mono-saccharide such as glucose, raffinose, galacturonic acid. The relative activity of p-nitrophenyl-$\beta$-D-glucopyranoside(PNPG) hydrolysis was higher than that of cellobiose hydrolysis in extracellular enzymes, and reverse is true in intracellular enzymes. Intact enzyme production of P. sp.-L4 on lemon peel lesion was sequential. $\beta$-Glucosidase and CMCase were produced first and followed by PGase. The enzyme productivities and pH in lesions were coincident with optimal pH of each enzyme activities.

  • PDF

Isolation and identification of cellulolytic Actinomycetes (Cellulose 분해 방선균의 분리 및 동정)

  • 정현호;성하진;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.377-383
    • /
    • 1986
  • About 300 cellulolytic actinomycetes isolated from soils were tested for their cellulase activities estimated by means of filter paper swelling and carboxymethyl cellulose saccharifying activity. Then, 16 isolates which had shown relatively high levels of CMCase activity were selected and examined for their abilities of $\beta$-glucosidase production. Among them strain No. 109 was found to have highest level of intracellular $\beta$-glucosidase, and selected for the further studies. In this paper, the cultural, morphological and physiological properties, and cell wall composition of strain No. 109 were described in relation to the taxonomic status of this actinomycete. Based on the results obtained in these experiments strain No. 109 was identified to be a similar species to Streptomyces tanashiensis.

  • PDF

Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1035-1043
    • /
    • 2021
  • Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.

Identification of hybride from intra- and interspecific protoplast fusion in trichoderma by electrophoretic patterns of enzymes (효소의 전기영동에 의한 trichoderma속 균의 종내, 종간 잡종의 동정)

  • 민경렴;박희문;하영칠
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 1989
  • In order to evaluate the applicability of enzyme electrophoresis for the identification of intra/interspecific hybride obtained by the protoplast fusion in Trichoderma, soluble proteins, intracellular soluble enzymes and extracellular $\beta$-glucosidase were analyzed by polyacrylamide gel electrophorsis. As the results, patterns of soluble protein, and isozyme patterns of peroxidase, malate dehydrogenase, and $\beta$-glucosidase in hydrids were defferent from those in parental and wild type strains. Therefore, it was established that the analysis of protein pattern by electrophoresis could be applied to isolate and identify the hybrids from the protoplast fusion.

  • PDF

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1649-1656
    • /
    • 2017
  • In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.