• Title/Summary/Keyword: intracelluar membrane

Search Result 6, Processing Time 0.023 seconds

Changes on the Methylmercury-induced Cytotoxicity by Control of Cell Membrane Transport System (세포막 물질수송계의 조절에 의한 유기수은의 세포독성 변화에 대한 연구)

  • 염정호;고대하;김준연;김남송
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.88-96
    • /
    • 2000
  • The aim of the current study was to evaluate the transport system in EMT-6 cell for the uptake of the methylmercury(MeHg). Several inhibitors ere used to test used to test which potential transport system might be involoved in MeHg uptake. Probenecid was used to test the organic transport system, valinomycin for testing the effect of the membrane potential, cytochalasin B for testing the facilitated diffusive D-glucose transport system and colchicine for testing the microtubule system. Ouabain for evaluating active transport system, 4',4-diisothiocyano-2',2-stilbenedisulfonic acid(DIDS) the Cl- ion transport system and verapamil for the $Ca^{2+}$ transprot system. Significantly, MeHg decreased the synthesis of nitric oxcide(NO) and intracellular ATP in ENT-6 cells. In the condition of ouabain containing with MeHg decreased the production of NO and intracelluar ATP. In the treatment of inhibitors, ouabain showed protective effect against cytotoxicity of MeHg but ather inhibitors not showed protective effects. The protective effects of ouabain against the cytotoxicity of MeHg deoended on the concentration of added ouabain to the culture medium for MET-6 cells. These result showed that the uptake of MeHg might be involved in the active transport system. Active transports system seems to share similarities with the transport systems for the uptake of MeHg when using MeHg and MeHg-glutathione complex.x.

  • PDF

Effect of Low Temperature upon the Fatty Acid Composition Plasma Membrane of Canola (저온 환경이 Canola 원형질막의 Fatty Acid 구성에 미치는 영향)

  • Kwon, Sung-Hwan;Plank, D.W.;Jeon, Hee;Kim, Jae-Chul
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.136-143
    • /
    • 1995
  • Using a PEG- dextran two phase partition method, plasma and intracellular membrane separated from microsomal membrane of canola (Brassica napus) leaves have been fractionated by centrifugation. $K^{+}$- ATPase specific activity in the plasma membrane (U$_2$ phase) of plants grown at $25^{\circ}C$ and 1$0^{\circ}C$ were 6.6 and 4.6 times, respectively that of the microsomal membrane. Plasma membrane had a lower cytochrome- c- oxidase specific activity than the microsomal membrane or intracellular membrane, while intracellular membrane (L$_2$ phase) had a high cytochrome-c- oxidase but little $K^{+}$- ATPase specific activity. The plasma membrane of canola grown at 1$0^{\circ}C$ had higher 18:3 to 18:2 (linolenic to linoleic acid) ratio (29.2% ) and higher degree of unsaturation than that grown at $25^{\circ}C$ The double bond index of plasma membrane from canola grown at 1$0^{\circ}C$ increased by 8.9% relative to canola grown at $25^{\circ}C$. Similar, intracellular membrane increased by 19.7% at 1$0^{\circ}C$. Canola grown at 1$0^{\circ}C$ was lower in chlorophyll contents (17.3%) than that grown at $25^{\circ}C$. These changes in fatty acid unsaturation were attributable largely to change in Cl8 fatty acid, with major changes occurring in linolenic acid (18 :3) which might have a physiological role of membrane to adaptation on low temperature.ure.

  • PDF

CORRELATIONS BETWEEN HIPPOCAMPAL THETA RHYTHM AND INTRACELLULAR CHARACTERISTICS OF PYRAMIDAL NEURONS (해마 theta 리듬과 pyramidal neuron의 세포내 특성과의 상관관계)

  • Kwon, Oh-Heung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyeun-Jung;Lee, Man-Gee;Cho, Jin-Hwa;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.671-682
    • /
    • 1998
  • Electrophysiological phenomena of pyramidal cells in the CA1 area of the dorsal hippocampus were recorded from and filled with neurobiotin in anesthetized rats. The electropharmacological properties of membrane as well as the cellular-synaptic generation of rhythmic slow activity (theta) were examined. The intracellular response characteristics of these pyramidal cells were distinctly different from responses of interneurons. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most of pyramidal cells did not display a spontaneous firing. Pyramidal cells displayed weak inward rectification and anodal break excitation. The slope of the frequency-current relation was 53.4 Hz/nA for the first interspike interval and 15.9 Hz/nA for the last intervals, suggesting the presence of spike frequency adaptation. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendritc processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens. Commissural stimulation discharged pyramidal cells, followed by excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). The frequency of theta-related membrane potential oscillation was voltage-independent in pyramidal neurons. At strong depolarization levels (less than 30 mV) pyramidal cells emitted sodium spike oscillation, phase-locked to theta. The observations provide direct evidence that theta-related rhythmic hyperpolarization of principal cells is brought by the rhythmically discharging interneurons. Furthermore, the findings in which interneurons were also paced by rhythmic inhibitory postsynaptic potentials during theta suggest that they were periodically hyperpolarized by their GABAergic septal afferents.

  • PDF

Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구)

  • Lee, Sang-Jae;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.87-94
    • /
    • 2015
  • High voltage pulsed electric fields (PEF) treatment is one of the more promising nonthermal technologies to fully or partially replace thermal processing. The objective of this research was to investigate the microbial inactivation mechanisms of PEF treatment in terms of intra- and extracellular changes in the cells. Saccharomyces cerevisae cells treated with PEF showed cellular membrane damage. This resulted in the leakage of UV-absorbing materials and intracelluar ions, which increased with increasing treatment time and electric fields strength. This indicates that PEF treatment causes cell death via membrane damage and physical rupture of cell walls. We further confirmed this by Phloxine B staining, a dye that accumulates in dead cells. Using scanning and transmission electron microscopy, we observed morphological changes as well as disrupted cytoplasmic membranes in PEF treated S. cerevisae cells. In addition, PEF treatment led to damaged chromosomal DNA in S. cerevisiae.

Characteristic Intracelluar Response to Lidocaine And MK-801 of Hippocampal Neurons: An In Vivo Intracellular Neuron Recording Study

  • Choi, Byung-Ju;Cho, Jin-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.297-305
    • /
    • 1998
  • This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of $2.4{\pm}0.9$ Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of $3.28{\pm}5.7\;M{\Omega}$ and a membrane time constant of $7.4{\pm}1.8$ ms. These neurons exhibited $2.4{\pm}0.2$ ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of $2.4{\pm}1.1$ Hz. The average peak amplitude of the AHP following the spikes in these groups was $7.4{\pm}0.6$ mV with respect to the resting membrane potential. Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of $3.45{\pm}6.0\;M{\Omega}$ and an average time constant of $8.0{\pm}1.4$ ms. The cells were firing spontaneously at an average discharge rate of $0.6{\pm}0.4$ Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative $Cl^--and\;K^+-dependent$, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.

  • PDF

Multiple Binding Affinities for Muscarinic Acetylcholine Receptors in Rat Brain (흰쥐 뇌내(腦內)의 무수카린성 콜린 수용체의 이질성(異質性))

  • Lee, Jong-Hwa;El-Fakahany, Esam E.
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 1987
  • We investigated the binding properties of $(^3H)$ QNB and $(^3H)$ NMS to mAchR to elucidate the characterstics of mAchR in rat brain by using two different preparations (homogemates & intact brain cell aggregates). The binding properties of both ligands demonstrated high affinity and saturability in both experiments, however $(^3H)$ QNB showed a significantly higher maximal binding capacity than tha ot $(^3H)$ NMS 1. In rat brain homogenates; Displacement of both lignands with several mAchR antagonists resulted in competition curves in accoradnce with the law of massaction for QNB, atropine & scopolamine in thie preparation, also a similar profile was found for the quaternary ammonium analogs of atropine & scopolamine (methyl atropine & methylscopolamine) when $(^3H)$ NMS was used to label the receptors in rat brain. But when these hydrophillic antagonists were used to displace $(^3H)$ QNB, they showed interaction with high- and low-affinity binding sites in brain homogenates. Pirenzepine, the nonclassical mAchR antagonist, was able to displace both ligands from binding sites in this preparation. 2. In intact rat brain cell aggregates; Intact bain cell aggregates were used to elucidate the binding characteristics of $(^3H)$ NMS to mAchR in rat. The magnitude of binding of this ligand was related linearly to the amount of cell protein in the binding assay with a high ratio of total to nonspecific binding. mAchR antagonists displaced specific $(^3H)$ NMS binding according to the law of mass-action, while it was possible to resolve displacement curves using mAchR agonist into high-& low-affinity component. 3. Our results indicate that more hydrophilic receptor ligand $(^3H)$ QNB, displacement experiments in both tissues demonstrated that the lipid solubility of a particulr mAchR ligand might play an important role in determining its profile of binding to the mAchR, and the concentrations of mAchR in rat brain are both on the cell surface (membrane-bound receptor) and in the intracelluar membrane (intermembrane-bound receptor). 4. The results are discussed in terms of the usefulness of dissociated intact rat brain cells in studying mAchR in central nervous system.

  • PDF