• Title/Summary/Keyword: intestinal physiology

Search Result 166, Processing Time 0.031 seconds

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

Effects of Cakes Containing Sponge Oligosaccharides on Blood Lipids and Intestinal Physiology in Rats (올리고당을 사용한 스폰지 케이크가 흰쥐의 소화관 생리과 혈청지질에 미치는 영향)

  • 이선영;이미라;이경애
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.619-624
    • /
    • 1999
  • The aim of this study was to evaluate the effects of oligosaccharides(fructo or isomalto ) contained in sponge cake on blood lipids and intestinal physiology in rats. The experimental diet was mixed with 30% sponge cakes. Normal male Sprague Dawley rats weighing about 530g were randomly assigned to three groups and placed experimental diets and deionized water at free access for 25 days. Rat in control group received a diet mixed with sponge cake containing sucrose only at 21.58g/100g diet and rats in the other two groups received diets mixed with sponge cakes of which 40% sucrose was replaced with each oligosaccharide. The results obtained were as follows: No significant differences in efficiency of food, liver weight and intestinal length were observed among groups. The cecal contents and cecal wall weights were increased more in fructooligosaccharide(FO) group than control. The pH of cecal contents decreased significantly in two oligosaccharide groups. The water contents of fresh feces in FO group were the highest and the those of two oligosaccharide groups were higher than that of control. Dry fecal weight increased significantly in isomaltooligosaccharide(IMO) group. Total serum cholesterol concentration was significantly lower in FO group. Serum triglyceride(TG) was not significantly different among three groups at p<0.05, but serum TG of FO group was lower than those of other groups. In conclusion, 40% replacement of sucrose with oligosaccharides in sponge cake may have beneficial effects on lipid metabolism and intestinal function in rats.

  • PDF

Vasoactive Intestinal Polypeptide Inhibits Pacemaker Activity via the Nitric Oxide-cGMP-Protein Kinase G Pathway in the Interstitial Cells of Cajal of the Murine Small Intestine

  • Kim, Byung Joo;Lee, Jae Hwa;Jun, Jae Yeoul;Chang, In Youb;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.337-342
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous depolarization (pacemaker potentials) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of vasoactive intestinal polypeptide (VIP) on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by whole-cell patch-clamp techniques. Addition of VIP (50 nM-$1{\mu}M$) decreased the amplitude of pacemaker potentials and depolarized resting membrane potentials. To examine the type of receptors involved in ICC, we examined the effects of the $VIP_1$ agonist and found that it had no effect on pacemaker potentials. Pretreatment with $VIP_1$ antagonist ($1{\mu}M$) for 10 min also did not block the VIP (50 nM)-induced effects. On the other hand exposure to 1H-(1,2,4)oxadiazolo(4,3-A)quinoxalin-1-one (ODQ, $100{\mu}M$), an inhibitor of guanylate cyclase, prevented VIP inhibition of pacemaker potentials. Similarly KT-5823 ($1{\mu}M$) or RP-8-CPT-cGMPS ($10{\mu}M$), inhibitors of protein kinase G (PKG) blocked the effect of VIP (50 nM) on pacemaker potentials as did N-nitro-L-arginine (L-NA, $100{\mu}M$), a non-selective nitric oxide synthase (NOS) inhibitor. These results imply that the inhibition of pacemaker activity by VIP depends on the NO-cGMP-PKG pathway.

Effects of Electroacupuncture and Manual-acupuncture at Combined Acupoints on Sex and Age in Rats (침(鍼)과 전침(電鍼) 자극 시 백서(白鼠)의 성별(性別)과 주령(週齡) 및 경혈배합(經穴配合)이 소장(小腸) 수송능(輸送能)에 미치는 영향)

  • Yun, Jeong-Ahn;Yu, Yun-Cho;Cho, Nam-Kun;Son, In-Chul;Lee, Ho-Sub;Lee, June-Mu;Kim, Kyung-Sik
    • Journal of Acupuncture Research
    • /
    • v.24 no.1
    • /
    • pp.179-193
    • /
    • 2007
  • Objectives: It has been demonstrated that acupuncture treats diseases while that the widespread use of that clinically and experimentally. It also has shown that electro-acupuncture(EA) is more effective than manual-acupuncture (MA). The purpose of this study was to investigate effect of EA and MA at combined acupoints on sex and age in rats. Methods: This study measured the effects of acupuncture treatment on small intestinal motility in rats. MA and EA(intensity, 5 times muscle twitch threshold) was applied for 30 minutes to the combined left and right sides acupoints on ST36, ST37, ST39 under enflurane anesthesia. EA and MA applied to the ST36, ST37, ST39 acupoints produced an elevation of small intestinal motility. Results: In experimental groups of combined left and right sides acupoints, only specified groups show elevation of small intestinal motility in male rats, 5 weeks age. Furthermore, combined left and right sides acupoints in EA and MA show differences effects according to the sex, male and female, and the age as 5, 6, 7, 8 weeks. Conclusion : Although these different according to the sex and age in rats do not have a established tendency, the present study suggest that effect of EA and MA are experimentally dependent upon the sex and age on small intestinal motility in rats.

  • PDF

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Gintonin absorption in intestinal model systems

  • Lee, Byung-Hwan;Choi, Sun-Hye;Kim, Hyeon-Joong;Park, Sang-Deuk;Rhim, Hyewhon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Background: Recently, we identified a novel ginseng-derived lysophosphatidic acid receptor ligand, called gintonin. We showed that gintonin induces $[Ca^{2+}]i$ transient-mediated morphological changes, proliferation, and migration in cells expressing lysophosphatidic acid receptors and that oral administration of gintonin exhibits anti-Alzheimer disease effects in model mice. However, little is known about the intestinal absorption of gintonin. The aim of this study was to investigate gintonin absorption using two model systems. Methods: Gintonin membrane permeation was examined using a parallel artificial membrane permeation assay, and gintonin absorption was evaluated in a mouse everted intestinal sac model. Results: The parallel artificial membrane permeation assay showed that gintonin could permeate an artificial membrane in a dose-dependent manner. In the everted sac model, gintonin absorption increased with incubation time (from 0 min to 60 min), followed by a decrease in absorption. Gintonin absorption into everted sacs was also dose dependent, with a nonlinear correlation between gintonin absorption and concentration at 0.1-3 mg/mL and saturation at 3-5 mg/mL. Gintonin absorption was inhibited by the Rho kinase inhibitor Y-27632 and the sodiumeglucose transporter inhibitor phloridzin. Moreover, lipid extraction with methanol also attenuated gintonin absorption, suggesting the importance of the lipid portion of gintonin in absorption. This result shows that gintonin might be absorbed through passive diffusion, paracellular, and active transport pathways. Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

Helicobacter pylori Vacuolating Toxin Exhibits Polar Activity of $Cl^-$ Secretion and Secretory Response to Carbachol in T84 Cells

  • Jin, Nan-Ge;Jin, Yong-Ri;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.289-293
    • /
    • 2004
  • To investigate whether VacA (vacuolating toxin) produced by Helicobacter pylori Korean stain 99 induces intestinal secretion, purified VacA was added to T84 cell monolayers mounted in Ussing chambers, and electrical parameters were monitored. Mucosal addition of low pH-pretreated VacA increased short circuit current (Isc). The effect was time- and dose-dependent and saturable. The time-to-peak Isc was concentration-dependent. Chloride channel inhibitors, niflumic acid or 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), inhibited VacA-stimulated Isc. Carbachol (CCh)-induced increase of Isc was prolonged by the addition of VacA to the mucosal side only. The effect was unaltered by the addition of niflumic acid. VacA did not show cytopathic effects. These studies indicate that VacA is a nonlethal toxin that acts in a polar manner on T84 monolayers to potentiate $Cl^-$ secretion and the response to CCh secretion without decrease in monolayer resistance. VacA may contribute to diarrhea diseases in human intestinal epithelial cells.

Impact of Micellar Vehicles on in situ Intestinal Absorption Properties of Beta-Lapachone in Rats

  • Jang, Soung Baek;Kim, Dongju;Kim, Seong Yeon;Park, Changhee;Jeong, Ji Hoon;Kuh, Hyo-Jeong;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • The aim of the present study was to examine the effect of micellar systems on the absorption of beta-lapachone (b-lap) through different intestinal segments using a single-pass rat intestinal perfusion technique. B-lap was solubilized in mixed micelles composed of phosphatidylcholine and sodium deoxycholate, and in sodium lauryl sulfate (SLS)-based conventional micelles. Both mixed micelles and SLS micelles improved the in situ permeability of b-lap in all intestinal segments tested although the mixed micellar formulation was more effective in increasing the intestinal absorption of b-lap. The permeability of b-lap was greatest in the large intestinal segments. Compared with SLS micelles, the effective permeability coefficient values measured with mixed micelles were 5- to 23-fold higher depending on the intestinal segment. Our data suggest that b-lap should be delivered to the large intestine using a mixed micellar system for improved absorption.

Nitric oxide(NO) mediating non-adrenergic non-cholinergic(NANC) relaxation in the boar retractor penis muscle I. Mediators of nonadrenergic, noncholinergic relaxation of porcine retractor penis muscle : nitric oxide and vasoactive intestinal polypeptide (Nitric oxide에 의한 수퇘지 음경후인근의 비아드레날린 비콜린 동작성 이완 I. 돼지 음경후인근의 비아드레날린 비콜린성 이완을 매개하는 신경전달물질 : nitric oxide와 vasoactive intestinal polypeptide)

  • Mun, Kyu-whan;Kim, Jeum-yong;Kim, Tae-wan;Kang, Tong-mook;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.447-458
    • /
    • 1995
  • This study was carried out to characterize nonadrenergic, noncholinergic(NANC) relaxation of porcine retractor penis(PRP) muscle induced by electrical field stimulation(EFS) and to investigate the actions of niric oxide(NO) and vasoactive intestinal polypeptide(VIP) as candidates for NANC neurotransmitters. Biphasic relaxations of PRP muscle were induced by EFS to NANC nerve. Rapid-phase relaxation was observed at low frequency(0.5-16Hz) and slow-phase relaxation followed during high frequency(8-60Hz). Both relaxations were frequency-dependent and TTX($1{\times}10^{-6}M$)-sensitive. L-NAME($2{\times}10^{-5}M$) inhibited the rapid-phase relaxation, but not the slow-phase relaxation. The inhibition of the rapid-phase relaxation with L-NAME was reversed by L-arginine ($1{\times}10^{-3}M$) but not by D-arginine($1{\times}10^{-3}M$). Methylene blue($4{\times}10^{-5}M$) reduced the rapid-phase relaxation. Exogenous No(ExoNO, $1{\times}10^{-5}-1{\times}10^{-4}M$) induced dose-dependent relaxations of PRP muscle. Oxyhemoglobin($5{\times}1^{-5}M$) blocked the relaxation induced by ExoNO and inhibited EFS-induced relaxation. Hydroquinone($1{\times}10^{-4}M$) also abolished the relaxation induced by ExoNO, but did not affect EFS-induced relaxation. L-NAME resistant slow-phase relaxation to EFS was inhibited by ${\alpha}$-chymotrypsin(2.5 U/ml). Both methylene blue($4{\times}10^{-5}M$) and Nethylmaleimide($1{\times}10^{-4}M$) reduced the slow-phase relaxation by EFS. [4-Cl-D-$Phe^6$, $Leu^{17}$]-VIP($3{\times}10^{-6}M$) inhibited the slow-phase relaxation by EFS. External applications of VIP ($1{\times}10^{-7}M$) caused relaxations that were simillar to the L-NAME resistant slow-phase relaxations induced by EFS, and relaxant effects of exogenous VIP were blocked by ${\alpha}$-chymotrypsin(2.5 U/ml).

  • PDF