• 제목/요약/키워드: intestinal immunomodulatory effect

검색결과 10건 처리시간 0.014초

병풀 추출물이 첨가된 음료 시제품의 장내 면역조절 효과와 지표물질 (Intestinal Immunomodulatory Effect and Marker Compound of Centella asiatica Extracts-Added Beverage Prototype)

  • 김연숙;신현영;구자평;하은지;정원비;정미연;유광원
    • 한국식품영양학회지
    • /
    • 제36권6호
    • /
    • pp.436-444
    • /
    • 2023
  • To produce an intestinal immunomodulatory beverage containing Centella asiatica extract (CAE), three types of CAE-added beverage prototypes were prepared, and their immunomodulatory activities and marker compounds were analyzed. As a result of the cytotoxicity assessment, all the beverages did not show significant toxicity compared to the control group. Next, the immunomodulatory activities of the beverage prototype were evaluated using the inflammatory model of IL-1β-induced intestinal epithelial cell line. All the samples significantly reduced the production of IL-6, IL-8, and MCP-1 in a CAE concentration-dependent manner. In addition, CAE-added beverages inhibited NO, IL-6, and IL-12 production in LPS-induced RAW 264.7 cells. When the major triterpenoids, as marker compounds for the production of CAE-added beverages, were analyzed by HPLC-DAD, only asiaticoside was detected beyond the limit of quantification, while madecassoside, madecassic acid, and asiatic acid were not detected. The amounts of asiaticoside in CAE-added beverage prototypes were confirmed in No. 1 (19.39 ㎍/mL), 2 (19.25 ㎍/mL), and 3 (19.98 ㎍/mL). In conclusion, the results of this study suggested that CAE-added beverage prototypes induced immunomodulatory effects in the intestinal inflammatory cell line models and asiaticoside could be used as a marker compound for CAE-added beverage production.

Immunomodulatory Effects of Bifidobacterium spp. and Use of Bifidobacterium breve and Bifidobacterium longum on Acute Diarrhea in Children

  • Choi, Yae Jin;Shin, Seon-Hee;Shin, Hea Soon
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1186-1194
    • /
    • 2022
  • The intake of probiotic lactic acid bacteria not only promotes digestion through the microbiome regulated host intestinal metabolism but also improves diseases such as irritable bowel syndrome and inflammatory bowel disease, and suppresses pathogenic harmful bacteria. This investigation aimed to evaluate the immunomodulatory effects in intestinal epithelial cells and to study the clinical efficacy of the selected the Bifidobacterium breve and Bifidobacterium longum groups. The physiological and biochemical properties were characterized, and immunomodulatory activity was measured against pathogenic bacteria. In order to find out the mechanism of inflammatory action of the eight viable and sonicated Bifidobacterium spp., we tried to confirm the changes in the pro-inflammatory cytokines (TNF-α, interleukin (IL)-6, IL-12) and anti-inflammatory cytokine (IL-10), and chemokines, (monocyte chemoattractant protein-1, IL-8) and inflammatory enzymatic mediator (nitric oxide) against Enterococcus faecalis ATCC 29212 infection in Caco-2 cells and RAW 264.7 cells. The clinical efficacy of the selected B. breve and B. longum group was studied as a probiotic adjuvant for acute diarrhea in children by oral administration. The results showed significant immunomodulatory effects on the expression levels of TNF-α, IL-6, IL-12, MCP-1, IL-8 and NO, in sonicated Bifidobacterium extracts and viable bifidobacteria. Moreover, each of the Bifidobacterium strains was found to react more specifically to different cytokines. However, treatment with sonicated Bifidobacterium extracts showed a more significant effect compared to treatment with the viable bacteria. We suggest that probiotics functions should be subdivided according to individual characteristics, and that personalized probiotics should be designed to address individual applications.

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Lactobacillus rhamnosus GG의 면역조절작용과 장내 정착성 (Immunogenicity and Survival Strategy of Lactobacillus rhamnosus GG in the Human Gut)

  • 타다오 사이토;임광세
    • Journal of Dairy Science and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.31-36
    • /
    • 2012
  • Lactobacillus rhamnosus GG(ATCC 53103) is one of the best researched probiotic strains in the world. Studies in children have shown that Lactobacillus rhamnosus GG effectively prevents early atopic disease in patients with high risk. The active molecules associated with the immunostimulatory sequence and anti-allergy effects of L. rhamnosus GG have not yet been identified. Unmethylated CpG motifs in bacterial DNA have a mitogenic effect in mouse immune cells, CpG-containing ISS oligodeoxynucleotides are potent Th1 adjuvants, effective in both preventing and reversing Th2-biased immune deviation in allergy models. The genomic DNA of L. rhamnosus GG is a potent inducer of murine B cell and dendritic cell immunoactivation. In L. rhamnosus GG genomic DNA, ID35 shows high activity in ISS assays in both mice and humans. The effects of ID35 result from a unique TTTCGTT motif located at its 5'-end, and its effects are comparable with murine prototype CpG 1826. L. rhamnosus GG is known to secrete proteinaceous pili encoded by the spaCBA gene cluster. The presence of pili structures may be essential for its adhesion to human intestinal mucus, explaining the prolonged duration of intestinal residence of this bacterium, compared to that of non-piliated lactobacilli.

  • PDF

유산균과 유단백질 유래 Peptide의 면역 조절 기능 연구 동향 (Immunomodulatory Effects of Lactic Acid Bacteria and Bioactive Peptides Derived from Milk)

  • 김철현
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.37-43
    • /
    • 2009
  • The mammalian immune system comprises a complex array of cells and molecules that interact to provide protection from pathogenic microorganisms. The beneficial role played by lactic acid bacteria and milk-derived peptides in humans, including their effect on the immune system, has been extensively reported. Lactic acid bacteria and milk-derived peptides, which are present in dairy products, are frequently used as nutraceuticals to improve some biological functions in the host. Activation of the systemic and secretory immune response by lactic acid bacteria and milk-derived peptides requires many complex interactions among the various constituents of the intestinal ecosystem. Thus, the aim of this review was to examine in detail the immunological potential of lactic acid bacteria and milk-derived peptides.

  • PDF

Syphacia obvelata: A New Hope to Induction of Intestinal Immunological Tolerance in C57BL/6 Mice

  • Taghipour, Niloofar;Mosaffa, Nariman;Rostami-Nejad, Mohammad;Homayoni, Mohamad Mohsen;Mortaz, Esmaeil;Aghdaei, Hamid Asadzadeh;Zali, Mohammad Reza
    • Parasites, Hosts and Diseases
    • /
    • 제55권4호
    • /
    • pp.439-444
    • /
    • 2017
  • The ability of nematodes to manipulate the immune system of their host towards a Th2 and T regulatory responses has been proposed to suppress the inflammatory response. Clinical trials have proposed a useful effect of helminth infections on improvement of inflammatory disorders. In this study, we investigated the immunomodulatory effect of Syphacia obvelata infection to induce intestinal tolerance in C57BL/6 mice. Mice were infected through the cagemates with self-infected BALB/c mice. Four weeks post-infection, expression levels of $IFN-{\gamma}$, $TNF-{\alpha}$, IL-17, and IL-10 were assessed in the supernatant of mesenteric lymph node (MLN) culture. $Foxp3^+Treg$ were measured in MLN cells by flow cytometry. In the S. obvelata-infected group, the percentage of Tregs ($5.2{\pm}0.4$) was significantly higher than the control ($3.6{\pm}0.5$) (P<0.05). The levels of IL-10 ($55.3{\pm}2.2$ vs $35.2{\pm}3.2$), IL-17 ($52.9{\pm}3.8$ vs $41{\pm}1.8$), $IFN-{\gamma}$ ($44.8{\pm}4.8$ vs $22.3{\pm}2.3$) and $TNF-{\alpha}$ ($71.1{\pm}5.8$ vs $60.1{\pm}3.3$) were significantly increased in infected mice compared to the control group (P<0.05). The above results showed the potential effects of S. obvelata to induce intestinal tolerance. Therefore, it seems that S. obvelata may increase the immunological suppressive function in the intestinal tract.

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk;Park, Keun-Tae;Kwon, Gayeung;Koh, Jong-Ho;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.883-892
    • /
    • 2018
  • Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • 제50권5호
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.

Modulation of Pro-inflammatory and Anti-inflammatory Cytokines in the Fat by an Aloe Gel-based Formula, QDMC, Is Correlated with Altered Gut Microbiota

  • Jinho An;Heetae Lee;Sungwon Lee;Youngcheon Song;Jiyeon Kim;Il Ho Park;Hyunseok Kong;Kyungjae Kim
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.15.1-15.10
    • /
    • 2021
  • Abnormal inflammatory responses are closely associated with intestinal microbial dysbiosis. Oral administration of Qmatrix-diabetes-mellitus complex (QDMC), an Aloe gel-based formula, has been reported to improve inflammation in type 2 diabetic mice; however, the role of the gut microbiota in ameliorating efficacy of QDMC remains unclear. We investigated the effect of QDMC on the gut microbiota in a type 2 diabetic aged mouse model that was administered a high-fat diet. Proinflammatory (TNF-α and IL-6) and anti-inflammatory (IL-4 and IL-10) cytokine levels in the fat were normalized via oral administration of QDMC, and relative abundances of Bacteroides, Butyricimonas, Ruminococcus, and Mucispirillum were simultaneously significantly increased. The abundance of these bacteria was correlated to the expression levels of cytokines. Our findings suggest that the immunomodulatory activity of QDMC is partly mediated by the altered gut microbiota composition.

소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설 (Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review)

  • 정후길;김선진;석민정;차현아;윤슬기;이나현;강경진
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.111-118
    • /
    • 2015
  • 프로바이오틱스, 프리바이오틱스 및 신바이오틱스 등의 물질과 미생물을 조제분유에 강화하여 건강증진 기능성 유산균, 특히 비피더스균과 유산간균의 성장을 선택적으로 자극함으로써 장내균총에 유익한 효과를 나타내고자 하는 노력이 경주되고 있다. 지난 10년 동안, 모유 수유가 장내균총에 미치는 유용 효과를 도모하기 위해서 프로바이오틱스와 프리바이오틱스를 함유하는 새로운 신바이오틱 조제분유가 제안되었다. 새로운 신바이오틱스는 상승 효과로 인해서 프로바이오틱스 및 프리바이오틱스를 개별적으로 사용하는 경우 보다 더 도움이 되는 것으로 기대된다. 한편, 조제분유 및 건조 제품의 제조에 사용되는 가공 기술 및 저장 조건 등이 프로바이오틱스의 생존에 악영향을 미치게 된다. 충분한 유산균수($10^8cfu/g$)로 장내 예정된 부위에 도달하여 숙주에 긍정적인 효과를 나타내기 위해서는 식품 제조공정 및 위장관 통과 시 프로바이오틱스의 생존성을 유지하는 것이 가장 중요한 요소이다. 일반적으로 안전하다고 인정되며, 높은 생물학적 가치를 가지고 있는 물질을 이용하여 적절하고 비용 효율적인 마이크로캡슐화 기술이 개발되면 조제분유의 품질 향상이 가능하게 된다. 프로바이오틱스는 복합적인 효과를 나타낸다. 하나는 살아 있는 생균체가 장내균총에 유익하게 영향을 미쳐 면역조절 효과를 보여주는 것이며, 다른 하나는 사균체가 항-염증 반응을 나타내는 것이다. 최근에, 사균체 또는 정제되지 않은 미생물 분획물이 건강에 긍정적인 영향을 미친다는 것을 명확하게 정의할 새로운 용어에 대한 필요성이 대두되었다. 그 결과, 충분한 양을 경구 또는 국소적으로 투여했을 때 인간과 동물에게 이로운 작용을 하는 사균체(손상되지 않거나 또는 파손된)나 정제되지 않은 세포 추출물(즉, 복잡한 화학적 조성)을 정의하기 위해 paraprobiotics라는 용어가 제안되었다. 프로바이오틱 균주 또는 프리바이오틱스를 조제분유에 강화했을 때 조제분유 수유아의 분변 미생물균총이 조정된다. 즉, 비피더스균 및 유산간균과 같은 건강 유익한 세균을 증가 시킴으로써, 프리바이오틱스는 분변 미생물균총의 조성을 변경하고, 이에 따라서 면역계의 활성을 조절한다. 따라서, 품질 향상을 위한 조제분유의 개발은 토착 장내균총의 대사 활성과 증식을 선택적으로 자극하는 비피더스균 등의 특정 프로바이오틱스 및 이눌린과 올리고당 등의 프리바이오틱스를 사용하여, 모유의 건강 유용 효과와 유사하게 접근하는 것에 초점을 맞추고 있다.

  • PDF