• Title/Summary/Keyword: interval-based events

Search Result 77, Processing Time 0.034 seconds

Comparison of Two-time Homogeneous Poisson Processes Using Inverse Type Sapling Plans (역샘플링법을 이용한 포와슨과정의 비교)

  • 장중순;임춘우;정유진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.67-80
    • /
    • 1988
  • This study is concerned with the comparison of two time homogeneous Poisson processes. Traditionally, the methods of testing equality of Poisson processes were based on the binomial distribution or its normal approximations. The sampling plans used in these methods are to observe the processes concurrently over a predetermined time interval, possibly different for each process. However, when the values of the intensities of the processes are small, inverse type sampling plans are more appropriate since there may be cases where only a few or even no events are observed in the predetermined time interval. This study considers 9 inverse type sampling plans for the comparison of two Poisson processes. For each sampling plans considered, critical regions and the design parameters of the sampling plan are determined to guarantee the significance level and the power at some values of the alternative hypothesis. The Problem of comparing of two Weibull processes are also considered.

  • PDF

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

Cerebrovascular Events in Pediatric Inflammatory Bowel Disease: A Review of Published Cases

  • Rohani, Pejman;Taraghikhah, Nazanin;Nasehi, Mohammad Mehdi;Alimadadi, Hosein;Aghdaei, Hamid Assadzadeh
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.180-193
    • /
    • 2022
  • Pediatric inflammatory bowel disease (PIBD) is a multisystem disorder characterized by intestinal and extraintestinal manifestations and complications. Cerebrovascular events (CVE) are rare extraintestinal complications in patients with PIBD. Statistics show that 3.3% patients with PIBD and 1.3-6.4% adult patients with inflammatory bowel disease (IBD) experience CVE during the course of the disease. Therefore, this study aimed to review the records of children with IBD who developed CVE during the course of the disease. We retrospectively reviewed 62 cases of PIBD complicated by CVE. The mean patient age at the time of thrombotic events was 12.48±4.13 years. The incidence of ulcerative colitis was significantly higher than that of Crohn's disease (43 [70.5%] vs. 13 [21.3%] patients). Most patients (87.93%) were in the active phase of IBD at the time of CVE. The mean time interval between the onset of IBD and CVE was 20.84 weeks. Overall, 11 (26.83%) patients showed neurological symptoms of CVE at disease onset. The most frequent symptom on admission was persistent and severe headaches (67.85%). The most common site of cerebral venous thrombosis was the transverse sinuses (n=23, 53.48%). The right middle cerebral artery (n=3, 33.34%) was the predominant site of cerebral arterial infarction. Overall, 41 (69.49%) patients who were mostly administered unfractionated heparin or low-molecular-weight heparin (56.09%) recovered completely. Patients with IBD are at a risk of thromboembolism. CVE may be the most common type of thromboembolism. Based on these findings, the most common risk factor for CVE is IBD flares. In patients with CVE, anticoagulant therapy with heparin, followed by warfarin, is necessary.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

On fuzzy number-valued Choquet integrals

  • 장이채;김태균
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.7-7
    • /
    • 2003
  • We studied closed set-valued Choquet integrals in two papers(1997, 2000) and convergence theorems under some sufficient conditions in two papers(2003), for examples : (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued functions, (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions. In this presentation, we consider fuzzy number-valued functions and define Choquet integrals of fuzzy number-valued functions. But these concepts of fuzzy number-valued Choquet inetgrals are all based on the corresponding results of interval-valued Choquet integrals. We also discuss their properties which are positively homogeneous and monotonicity of fuzzy number-valued Choquet integrals. Furthermore, we will prove convergence theorems for fuzzy number-valued Choquet integrals. They will be used in the following applications : (1) Subjectively probability and expectation utility without additivity associated with fuzzy events as in Choquet integrable fuzzy number-valued functions, (2) Capacity measure which are presented by comonotonically additive fuzzy number-valued functionals, and (3) Ambiguity measure related with fuzzy number-valued fuzzy inference.

  • PDF

A Comparative Estimation of Performance of Average Loss Interval Calculation Method in TCP-Friendly Congestion Control Protocol (TFRC 프로토콜의 평균 손실 구간 계산방식의 비교평가)

  • Lee, Sang-Chul;Jang, Ju-Wook
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.495-500
    • /
    • 2002
  • We propose a new estimation method for rate adjustment in the face of a packet loss in the TFRC protocol, a TCP-Friendly congestion control protocol for UDP flows. Previous methods respond in a sensitive way to a single packet loss, resulting in oscillatory transmission behavior. This is an undesirable for multimedia services demanding constant bandwidth. The proposed TFRC provides more smooth and fair (against TCP flows) transmission through collective response based on multiple packets loss events. We show our "Exponential smoothing method" performs better than known "Weight smoothing method" in terms of smoothness and fairness.

A semiparametric method to measure predictive accuracy of covariates for doubly censored survival outcomes

  • Han, Seungbong;Lee, JungBok
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.343-353
    • /
    • 2016
  • In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.

Query Operations for Fuzzy Spatiotemporal Databases (퍼지 시공간 데이터베이스를 위한 질의 연산)

  • Nhan Vu Thi Hong;Chi Jeong-Hee;Ryu Keun-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.81-88
    • /
    • 2004
  • GIS (geographic information system) applications increasingly require the representation of geospatial objects with fuzzy extent and querying of time-varying information. In this paper, we Introduce a FSTDB (fuzzy spatiotemporal database) to represent and manage states and events causing changes of dynamic fuzzy objects using fuzzy set theory. We also propose the algorithms for the operators to be included in a GIS to make it able to answer queries depending on fuzzy predicates during a time interval and a method to identify the development process of objects during a certain period based on the designed database. They can be used in application areas handling time-varying geospatial data, including global change (as in climate or land cover change) and social (demographic, health, ect.) application.

  • PDF

A fuzzy reasonal analysis of human reliability represented as fault tree structure

  • 김정만;이상도;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • In conventional probability-based human reliability analysis, the basic human error rates are modified by experts to consider the influences of many factors that affect human reliability. However, these influences are not easily represented quantitatively, because the relation between human reliability and each of these factors in not clear. In this paper, the relation is expressed quantitatively. Furthermore, human reliability is represented by error possibilities proposed by Onisawa, which is a fuzzy set on the interval [0,1]. Fuzzy reasoning is used in this method in order to obtain error possibilities. And, it is supposed that many basic events affected by the above factors are connected to the top event through Fault Tree structure, and an estimate of the top event expressed by a member- ship function is obtained by using the fuzzy measure and fuzzy integral. Finally, a numerical example of human reliability analysis obtained by this method is given.

  • PDF