• Title/Summary/Keyword: interval of dynamic response

Search Result 40, Processing Time 0.023 seconds

Dynamic response analysis for structures with interval parameters

  • Chen, Su Huan;Lian, Hua Dong;Yang, Xiao Wei
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.299-312
    • /
    • 2002
  • In this paper, a new method to solve the dynamic response problem for structures with interval parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.

Dynamic response of a Timoshenko beam to a continuous distributed moving load

  • Szylko-Bigus, Olga;Sniady, Pawel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.771-792
    • /
    • 2015
  • In the paper we study dynamic response of a finite, simply supported Timoshenko beam subject to a moving continuously distributed forces. Three problems have been considered. The dynamic response of the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been considered as the first problem. Obtained solutions allow to find the response of the beam under the interval of the finite length a uniformly distributed moving load. Part of the solutions are presented in a closed form instead of an infinite series. As the second problem the steady-state vibrations of the beam under uniformly distributed mass $m_1$ moving with the constant velocity has been considered. The vibrations of the beam caused by the interval of the finite length randomly distributed load moving with constant velocity is considered as the last problem. It is assumed that load process is space-time stationary stochastic process.

Effect of Particle Aggregation on Dynamic Response of An Electrorheological Fluid in Shear Mode (전단 유동을 하는 전기유변 유체의 동적 응답에 입자 응집이 미치는 영향)

  • Choi, Byung-Ha;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2885-2889
    • /
    • 2007
  • In this study, the effect of particle aggregation on dynamic response time of Electrorheological (ER) fluid is investigated. The particle aggregation time is defined as the time interval between the application of the field and the formation of the first chain bridging the two electrodes. The dynamic response times of an ER fluid sheared between two concentric cylinders have been obtained under two different experimental conditions: the one is that the electric field is induced before shearing, and the other is that the electric field is induced after shearing. From the difference between two response times, the particle aggregation times are determined under various electric fields and shear rates. The experimental results show that the aggregation rate is decreased with an increase of shear rate, while electric field has little effect on it. Therefore, it is verified that the hydrodynamic force hinders the formation of chain-like structures.

  • PDF

An improved interval analysis method for uncertain structures

  • Wu, Jie;Zhao, You Qun;Chen, Su Huan
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.713-726
    • /
    • 2005
  • Based on the improved first order Taylor interval expansion, a new interval analysis method for the static or dynamic response of the structures with interval parameters is presented. In the improved first order Taylor interval expansion, the first order derivative terms of the function are also considered to be intervals. Combining the improved first order Taylor series expansion and the interval extension of function, the new interval analysis method is derived. The present method is implemented for a continuous beam and a frame structure. The numerical results show that the method is more accurate than the one based on the conventional first order Taylor expansion.

A Method for Nonlinear Dynamic Response Analysis of Semi-infinite Foundation Using Mapping (사영에 의한 반무한지반의 비선형해석)

  • Lee Choon-Kil
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • A special finite difference method for nonlinear dynamic response analysis of semi-infinite foundation soil using mapping which transforms semi-infinite domain into finite domain is presented here. For the region of engineering interest, mapping is isometric, and fur far field, shrink mapping which transforms infinite interval into finite interval is adopted. At first, the responses of semi-infinite foundation soil with linear constituting model are computed, and compared with theoretical results and those of existing method. Good agreements are obtained among the results of the proposed method, Lamb's theory and FEM with extensive mesh model. Then the responses of infinite foundation soil are computed by the present method, using small and large mesh model. The results of small and large mesh models agree well with each other, demonstrating the effectiveness of the proposed method.

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing (적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;배상달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique (재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF