• Title/Summary/Keyword: interval 제2종 퍼지 집합

Search Result 5, Processing Time 0.02 seconds

An Interval Type-2 Fuzzy K-Nearest Neighbor (Interval 제2종 퍼지 K-Nearest Neighbor)

  • 황철;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.271-274
    • /
    • 2002
  • 본 논문은 (1)에 기술된 퍼지 K-nearest neighbor(NN) 알고리즘의 확장인 interval 제2종 퍼지 K-NN을 제안한다. 제안된 방법에서는, 각 패턴벡터의 멤버쉽 값들에 불확실성(Uncertainty)을 할당하는 것에 의해 interval 제2종 퍼지 멤버쉽으로의 확장을 시도한다. 이러한 확장은, K의 결정에 존재하는 불확실성은 다루고, 조정할 수 있게 한다.

An Interval Type-2 Fuzzy Perceptron for Finding Linear Decision Boundaries (선형분류 경계면을 찾기위한 Interval 제2종 퍽지퍼셉트론)

  • Hwang, Cheul;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.294-299
    • /
    • 2002
  • This paper presents an interval type-2 fuzzy perceptron algorithm that is an extension of the type-1 fuzzy perceptron algorithm proposed in [1]. In our proposed method, the membership values for each pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the decision boundary obtained by interval type-2 fuzzy memberships can converge to a more desirable location than the boundary obtained by crisp and type-1 fuzzy perceptron methods. Experimental results are given to show the effectiveness of our method.

An Interval Type-2 Fuzzy C Spherical Shells Algorithm (Interval 제 2종 퍼지 C원형 윤곽선 알고리즘)

  • Hwang, Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.214-218
    • /
    • 2004
  • 본 논문은 fuzzy C 원형 윤곽선(fuzzy C spherical shells 이하 FCSS) 알고리즘을 확장한 interval 제2종 fuzzy C원형 윤곽선 알고리즘에 관한 연구이다. 본 논문에서는 FCSS의 클러스터 윤곽선과의 관계에 의해 패턴이 할당 받은 퍼지 소속도(fuzzy 소속도) 값 결정에 존재하는 불확실성(uncertainty)은 표현하고, 관리하여 플러스터링 성능을 향상하고자 한다. 이러한 과정을 통하여 확장된 interval 제2종 FCSS는 패턴 집합에 존재할 수 있는 노이즈(noise)의 존재에 대해 기존의 FCSS보다 좀더 안정적이고, 바람직한 클러스터 윤곽선을 검출해낼 수 있도록 할 수 있을 것이다.

  • PDF

Interval Type-2 Fuzzy C Clustering for Detecting Spherical Shells (원형 윤곽선 검출을 위한 Interval 제2종 퍼지 C 클러스터링)

  • Hwang, Cheul;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.713-719
    • /
    • 2004
  • This paper presents an interval type-2 fuzzy C-spherical shells (FCSS) algorithm that is an extension of the type-1 FCSS algorithm proposed in (1). In our proposed method, the membership values for each pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the cluster boundary obtained by the interval type-2 FCSS can be found to be more desirable than that of type-1 FCSS in the presence of noise. Experimental results are given to show the effectiveness of our method.

Interval type-2 fuzzy radial basis function neural network (Interval 제 2 종 퍼지 radial basis function neural network)

  • Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF