• Title/Summary/Keyword: internet use time

Search Result 1,538, Processing Time 0.029 seconds

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

NUI/NUX of the Virtual Monitor Concept using the Concentration Indicator and the User's Physical Features (사용자의 신체적 특징과 뇌파 집중 지수를 이용한 가상 모니터 개념의 NUI/NUX)

  • Jeon, Chang-hyun;Ahn, So-young;Shin, Dong-il;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.11-21
    • /
    • 2015
  • As growing interest in Human-Computer Interaction(HCI), research on HCI has been actively conducted. Also with that, research on Natural User Interface/Natural User eXperience(NUI/NUX) that uses user's gesture and voice has been actively conducted. In case of NUI/NUX, it needs recognition algorithm such as gesture recognition or voice recognition. However these recognition algorithms have weakness because their implementation is complex and a lot of time are needed in training because they have to go through steps including preprocessing, normalization, feature extraction. Recently, Kinect is launched by Microsoft as NUI/NUX development tool which attracts people's attention, and studies using Kinect has been conducted. The authors of this paper implemented hand-mouse interface with outstanding intuitiveness using the physical features of a user in a previous study. However, there are weaknesses such as unnatural movement of mouse and low accuracy of mouse functions. In this study, we designed and implemented a hand mouse interface which introduce a new concept called 'Virtual monitor' extracting user's physical features through Kinect in real-time. Virtual monitor means virtual space that can be controlled by hand mouse. It is possible that the coordinate on virtual monitor is accurately mapped onto the coordinate on real monitor. Hand-mouse interface based on virtual monitor concept maintains outstanding intuitiveness that is strength of the previous study and enhance accuracy of mouse functions. Further, we increased accuracy of the interface by recognizing user's unnecessary actions using his concentration indicator from his encephalogram(EEG) data. In order to evaluate intuitiveness and accuracy of the interface, we experimented it for 50 people from 10s to 50s. As the result of intuitiveness experiment, 84% of subjects learned how to use it within 1 minute. Also, as the result of accuracy experiment, accuracy of mouse functions (drag(80.4%), click(80%), double-click(76.7%)) is shown. The intuitiveness and accuracy of the proposed hand-mouse interface is checked through experiment, this is expected to be a good example of the interface for controlling the system by hand in the future.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

A Study on 21st Century Fashion Market in Korea (21세기 한국패션시장에 대한 연구)

  • Kim, Hye-Young
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.209-216
    • /
    • 1998
  • The results of the study of diving the 21st century's Korea fashion market into consumer market, fashion market, and a new marketing strategy are as follows. The 21st consumer market is First, a fashion democracy phenomenon. As many people try to leave unconditional fashion following, consumer show a phenomenon to choose and create their own fashion by subjective judgements. Second, a phenomenon of total fashion pursuit. Consumer in the future are likely to put their goals not in differentiating small item products, but considering various fashion elements based on their individuality and sense of value. Third, world quality-oriented. With the improvement of life level, it accomplishes to emphasize consumers' fashion mind on the world wide popular use of materials, quality, design and brand image. Fourth, with the entrance of neo-rationalism, consumers show increasing trends to emphasize wisdom, solidity in goods strategy pursuing high quality fashion and to demand resonable prices. Fifth, concept-oriented. Consumers are changing into pursuing concept appropriate to individual life scene. Prospecting the composition of the 21st century's fashion market, First, sportive casual zone will draw attention more than any other zone. This is because interest in sports will grow according to the increase of leisure time and the expasion of time and space in the 21st century, and also ecology will become the important issue of sports sense because of human beings's natural habit toward nature. Second, the down aging phenomenon will accelerate its speed as a big trend. Third, a retro phenomenon, a concept contrary to digital and high-tech, will become another big trend for its remake, antique, and classic concept in fashion market with ecology trend. New marketing strategy to cope with changing fashion market is as follows. First, with the trend of borderless concept, borders between apparels are becoming vague, for example, they offer custom-made products to consumers. Second, as more enterprises take the way of gorilla and guerrilla where guerrillas who aim at niche market show up will develop. Basically, they think highly of individual creative study, and pursue the scene adherence with high sensitiveness. However this polarization becomes mutually-supplementing relationship showing gorilla's guerilla movement, and guerilla's gorilla high-tech. Third with the development of value retailing, enterprises pursuing mass merchandising of groups called category killers are expanded and amplified to new product fields, and expand business' share. Fourth, using outsourcing, the trend to use exterior function leaving each enterprise's strength by inspecting its own work is gradually strong. Fifth, with the expansion of none store sale, the entrance of the internet and the CD-ROM sales added to communication sales such as catalogues are specified. An eminent American think tank expect that 5-5% of the total sale of clothes and home goods in 2010 will be done by none store sale. Accordingly, to overcome the problems, First international, global level marketing, Second, the improvement of technology, Third, knowledge-creating marketing are needed.

  • PDF

Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation (웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.67-88
    • /
    • 2019
  • Webtoon is a Korean-style digital comics platform that distributes comics content produced using the characteristic elements of the Internet in a form that can be consumed online. With the recent rapid growth of the webtoon industry and the exponential increase in the supply of webtoon content, the need for effective webtoon content recommendation measures is growing. Webtoons are digital content products that combine pictorial, literary and digital elements. Therefore, webtoons stimulate consumer sentiment by making readers have fun and engaging and empathizing with the situations in which webtoons are produced. In this context, it can be expected that the sentiment that webtoons evoke to consumers will serve as an important criterion for consumers' choice of webtoons. However, there is a lack of research to improve webtoons' recommendation performance by utilizing consumer sentiment. This study is aimed at developing consumer sentiment pattern maps that can support effective recommendations of webtoon content, focusing on consumer sentiments that have not been fully discussed previously. Metadata and consumer sentiments data were collected for 200 works serviced on the Korean webtoon platform 'Naver Webtoon' to conduct this study. 488 sentiment terms were collected for 127 works, excluding those that did not meet the purpose of the analysis. Next, similar or duplicate terms were combined or abstracted in accordance with the bottom-up approach. As a result, we have built webtoons specialized sentiment-index, which are reduced to a total of 63 emotive adjectives. By performing exploratory factor analysis on the constructed sentiment-index, we have derived three important dimensions for classifying webtoon types. The exploratory factor analysis was performed through the Principal Component Analysis (PCA) using varimax factor rotation. The three dimensions were named 'Immersion', 'Touch' and 'Irritant' respectively. Based on this, K-Means clustering was performed and the entire webtoons were classified into four types. Each type was named 'Snack', 'Drama', 'Irritant', and 'Romance'. For each type of webtoon, we wrote webtoon-sentiment 2-Mode network graphs and looked at the characteristics of the sentiment pattern appearing for each type. In addition, through profiling analysis, we were able to derive meaningful strategic implications for each type of webtoon. First, The 'Snack' cluster is a collection of webtoons that are fast-paced and highly entertaining. Many consumers are interested in these webtoons, but they don't rate them well. Also, consumers mostly use simple expressions of sentiment when talking about these webtoons. Webtoons belonging to 'Snack' are expected to appeal to modern people who want to consume content easily and quickly during short travel time, such as commuting time. Secondly, webtoons belonging to 'Drama' are expected to evoke realistic and everyday sentiments rather than exaggerated and light comic ones. When consumers talk about webtoons belonging to a 'Drama' cluster in online, they are found to express a variety of sentiments. It is appropriate to establish an OSMU(One source multi-use) strategy to extend these webtoons to other content such as movies and TV series. Third, the sentiment pattern map of 'Irritant' shows the sentiments that discourage customer interest by stimulating discomfort. Webtoons that evoke these sentiments are hard to get public attention. Artists should pay attention to these sentiments that cause inconvenience to consumers in creating webtoons. Finally, Webtoons belonging to 'Romance' do not evoke a variety of consumer sentiments, but they are interpreted as touching consumers. They are expected to be consumed as 'healing content' targeted at consumers with high levels of stress or mental fatigue in their lives. The results of this study are meaningful in that it identifies the applicability of consumer sentiment in the areas of recommendation and classification of webtoons, and provides guidelines to help members of webtoons' ecosystem better understand consumers and formulate strategies.

A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal (PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular) is an integrated technology of group voice calls, video calls and internet based multimedia services. If a PoC user can not participate in the PoC session for various reasons such as an emergency situation, lack of battery capacity, then the user can use the PoC Box which has a similar functionality to the MM Box in the MMS(Multimedia Messaging Service). The RTSP(Real-Time Streaming Protocol) method is recommended to be used when there is a transmission session between the PoC box and a terminal. Since the existing VOD service uses a wired network, the packet size of RTSP-based VOD service is huge, however, the PoC service has wireless communication environments which have general characteristics to be used in RTSP method. Packet loss in a wired communication environments is relatively less than that in wireless communication environment, therefore, a buffering latency occurs in PoC service due to a play-out delay which means an asynchronous play of audio & video contents. Those problems make a user to be difficult to find the information they want when the media contents are played-out. In this paper, the following techniques and methods were proposed and their performance and superiority were verified through testing: cross-over dual reception buffering technique, advance partition multi-reception buffering technique, and on-demand multi-reception buffering technique, which are designed for effective picking up of information in media content being transmitted in short amount of time using RTSP when a user searches for media, as well as for reduction in playback delay; and same-priority packetization transmission method and priority-based packetization transmission method, which are media data packetization methods for transmission. From the simulation of functional evaluation, we could find that the proposed multiple receiving buffering and packetizing methods are superior, with respect to the media retrieval inclination, to the existing single receiving buffering method by 6-9 points from the viewpoint of effectiveness and excellence. Among them, especially, on-demand multiple receiving buffering technology with same-priority packetization transmission method is able to manage the media search inclination promptly to the requests of users by showing superiority of 3-24 points above compared to other combination methods. In addition, users could find the information they want much quickly since large amount of informations are received in a focused media retrieval period within a short time.

Maximizing Utilization of Bandwidth using Multiple SSID in Multiple Wireless Routers Environment (다중 무선 공유기 환경에서 Multiple SSID를 이용한 대역폭 이용률 극대화)

  • Kwak, Hu-Keun;Yoon, Young-Hyo;Chung, Kyu-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.384-394
    • /
    • 2008
  • A wireless router is a device which allows several wireless clients to share an internet line using NAT (Network Address Translation). In a school or a small office environment where many clients use multiple wireless routers, a client may select anyone of wireless routers so that most clients can be clustered to a small set of the wireless routers. In such a case, there exists load unbalancing problem between clients and wireless routers. One of its result is that clients using the busiest router get poor service. The other is that the resource utilization of the whole wireless routers becomes very low. In order to resolve the problems, we propose a load sharing scheme to maximize network bandwidth utilization based on multiple SSID. In a time internal, the proposed scheme keeps to show the available bandwidth information of all the possible wireless routers to clients through multiple SSID. A new client can select the most available band with router. This scheme allows to achieve a good load balancing between clients and routers in terms of bandwidth utilization. We implemented the proposed scheme with ASUS WL 500G wireless router and performed experiments. Experimental results show the bandwidth utilization improvement compared to the existing method.