• 제목/요약/키워드: international co-production

검색결과 203건 처리시간 0.02초

느티만가닥버섯 수확후배지 발효사료 급여가 산란계에 미치는 영향 (Effect of dietary fermented spent mushroom (Hypsizygus marmoreus) substrates on laying hens)

  • 김수철;문여황;김혜수;김홍출;김종옥;정종천;조수정
    • 한국버섯학회지
    • /
    • 제12권4호
    • /
    • pp.350-356
    • /
    • 2014
  • 느티만가닥버섯 수확후배지 발효사료 급여가 산란계에 미치는 영향을 조사하기 위하여 도준농산에서 수거한 느티만가닥버섯 수확후배지를 Bacillus subtilis EJ3 배양액과 혼합하여 2주 동안 발효시킨 것을 공시사료로 사용하였다. 실험동물인 12주령된 Hy-line brown 갈색계 24수는 시판사료 급여구인 대조구(T0)와 5(T1), 10(T2), 15%(T3)의 버섯수확후배지 발효산물이 첨가된 시판사료 급여구인 시험구로 나누어 12주 동안 공시사료를 급여하였다. 12주동안 평균 산란율은 대조구에 비해 5% 버섯수확후배지 발효산물 첨가구에서 증가하였다가 버섯수확후배지 첨가량이 증가할수록 감소하였다. 사료섭취량은 대조구와 5% 버섯수확후배지 발효산물 첨가구에서는 큰 차이를 보이지 않았지만 버섯수확후배지 발효산물 첨가량이 증가할수록 약간 증가하였다. 사료요구율은 대조구와 5% 버섯수확후 배지 첨가구에서 비슷하게 나타났으며 10% 버섯수확후배지 첨가구부터는 버섯수확후배지 첨가량이 증가할수록 높게 나타났다. 산란량과 산란율은 대조구보다는 5% 버섯수확후배지 첨가구에서 높게 나타났다. 총 12주의 사양시험기간 동안 난중, 난각강도, 난각두께, 난황색 모두 5% 버섯수확후배지 발효산물을 첨가한 처리구에서는 대조구와 큰 차이가 없었지만 버섯수확후배지 발효산물의 첨가량이 증가할수록 감소하는 경향을 나타내었다. 계란의 내부 품질을 평가하는 기준인 난황색은 5% 버섯수확후배지 발효산물 첨가구에서는 대조구와 차이가 없었으나 10% 이상의 버섯수확후배지 발효산물을 첨가한 처리구에서는 난황색이 대조구에 비해 낮게 나타났다. 계란의 내부 오염 지표인 육반과 혈반에서는 처리구간의 차이는 없었으며 외부 품질 기준인 난각색도 처리구간에 차이를 나타내지 않았다. 그러나 계란의 포장과 수송과정에서 계란의 상품성에 영향을 미치는 요인인 난각중과 난각 두께는 5% 버섯수확후배지 발효산물 첨가구에서 대조구보다 높게 나타났다. 버섯수확후배지 발효산물의 급여구에서 산란계의 가스발생량은 버섯수확후배지 첨가량이 증가할수록 암모니아 가스 발생량이 감소하는 경향을 나타내었다.

패스틴®첨가가 단백질 분해율과 반추위 발효 및 영양소 소화율에 미치는 영향 (Effects of Passtein® Supplements on Protein Degradability, Ruminal Fermentation and Nutrient Digestibility)

  • 최유지;최낙진;박성호;송재용;엄재상;고종열;하종규
    • Journal of Animal Science and Technology
    • /
    • 제44권5호
    • /
    • pp.549-560
    • /
    • 2002
  • 본 시험은 패스틴$^{(R)}$ 을 첨가하였을 때, in vitro 상에서 단백질 fraction과 분해율에 미치는 영향과, in vivo 상에서 반추위 성상, 미생물 군집, 암모니아태 질소 농도 및 영양소 소화율에 미치는 영향을 구명하고자 실시하였다. In vitro 실험에서는 1mm로 분쇄된 대두박을 기질로 하여 패스틴$^{(R)}$ ((주)은진인터내셔날)을 첨가하여 borate-phosphate buffer와 중성세제에서의 조단백질 분해율을 측정하였으며, exogenous enzyme (Streptomyces griseus 유래 protease)를 이용하여 39$^{\circ}C$에서 0, 2, 4, 8, 12, 48 시간동안 배양 후 조단백질 분해율을 측정하였다. 반추위 발효성상과 영양소 소화율은 반추위 fistula가 부착된 평균체중 300kg의 홀스타인 수소 4두를 이용하여 무첨가구, 패스틴$^{(R)}$ 첨가구의 두개 처리구에 2마리씩 4마리를 배치하여 측정하였다. Buffer Soluble Protein fraction은 패스틴$^{(R)}$ 첨가 수준별로 차이가 없었으나, 무첨가구에 비해 패스틴$^{(R)}$ 첨가구에서 감소하는 경향을 보였다. 단백질 분해율은 배양 0 시간대에서 4시간대까지는 처리구간 유의성이 없었지만, 12 h과 48 h에서는 패스틴$^{(R)}$ 첨가로 시험구에서 감소되었다. 용해 단백질 분해율 ‘a’는 패스틴$^{(R)}$ 시험구에서 경미하게 높은 수치를 나타내었지만, 소화 가능한 단백질 분해율 ‘a+b’는 패스틴$^{(R)}$ 시험구에서 낮은 경향을 보였다. 패스틴$^{(R)}$ 첨가로 pH와 $NH_3$- N 농도는 증가하는 경향이었으며 휘발성지방산, 미생물 수 및 enzyme activity는 감소하였고 영양소 소화율은 높았으나 유의적인 차이는 없었다.

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.