• Title/Summary/Keyword: internal materials

Search Result 3,183, Processing Time 0.025 seconds

High Temperature Compressive Strength of Polymer Cement Composite Apply for 3D Printing Exterior Materials (시멘트 폴리머를 사용한 외장재용 결합재의 고온강도 특성)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.116-117
    • /
    • 2019
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base composite material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed high temperature strength characteristics for application as an exterior materials of buildings and confirmed its possibility.

  • PDF

The metal corrosion caused by museum indoor air pollutants (박물관 실내 대기오염물질에 의한 금속 부식 영향)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.5-14
    • /
    • 2008
  • The effect of air pollutants coming from internal museum materials such as wood-based products and cements on metal corrosion have been investigated. The Oddy test and the Chamber test was employed as a corrosion test. The metal pieces after the Oddy test had different corrosion types caused by the internal museum materials. The most effective wood based product was 18T HS(E0) and 9mm plywood(F0,E0). Iron(Fe) and copper(Cu) also bronze of the Chamber test had corrosion caused by Formic acid, Acetic acid, and Acetaldehyde. The packing materials in high humidity had caused more corrosion on the surface of the metal pieces than in low humidity.

  • PDF

Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S.;Das C. K.;Agarwal K.;Mathur G N.
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 2005
  • In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

Characteristics of Diamondike Carbon thin Films by Low Discharging Frequency(450KHz) PECVD (저주파수(450 KHz) PECVD에 의한 Diamondlike Carbon박막의 특성)

  • Kim, Han-Ju;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.227-232
    • /
    • 1994
  • Diamondlike carbon thin film has been fabricated with low discharging frequency, 450KHz by plasma enhanced chemical vapor deposition. Its physical properties such as optical band gap, microhardness and internal stress have been compared with 13.56MHz film. Optical band gap of 450KHz DLC thin film was less than 13.56MHz film and it was found that C-H bond concentration and total hydrogen contents in the film decreased greatly as the result of FT-IR and CHN analysis. Also, when DLC thin film was fabricated with low discharging frequency, it was expected that the adhesion of the film to the substrate was improved by the great decrease of internal stress without any considerable decrease of microhardness.

  • PDF

A new design chart for estimating friction angle between soil and pile materials

  • Aksoy, Huseyin Suha;Gor, Mesut;Inal, Esen
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Frictional forces between soil and structural elements are of vital importance for the foundation engineering. Although numerous studies were performed about the soil-structure interaction in recent years, the approximate relations proposed in the first half of the 20th century are still used to determine the frictional forces. Throughout history, wood was often used as friction piles. Steel has started to be used in the last century. Today, alternatively these materials, FRP (fiber-reinforced polymer) piles are used extensively due to they can serve for long years under harsh environmental conditions. In this study, various ratios of low plasticity clays (CL) were added to the sand soil and compacted to standard Proctor density. Thus, soils with various internal friction angles (${\phi}$) were obtained. The skin friction angles (${\delta}$) of these soils with FRP, which is a composite material, steel (st37) and wood (pine) were determined by performing interface shear tests (IST). Based on the data obtained from the test results, a chart was proposed, which engineers can use in pile design. By means of this chart, the skin friction angles of the soils, of which only the internal friction angles are known, with FRP, steel and wood materials can be determined easily.

Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer

  • Lee, Kyu-Yeon;Jung, Hae-Noo-Ree;Mahadik, D.B.;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.15-20
    • /
    • 2016
  • In an effort to overcome the weakness of aerogel, polymer aerogels have been prepared by copolymerizing the different types of monomers through sol-gel process. Polymerizing the successive phase of a high internal phase emulsion, which has interconnected porous structure, porous polymer aerogel can be manufactured. In this paper, we use the styrene/divinylbenzene chain as a basic monomer structure, and additionally use 2-ethylhexyl methacrylate (2-EHMA) or 2-ethylhexyl acrylate (2-EHA) as monomers for distinguishing the visible mechanical properties of synthesized polymer aerogel. We can observe the different tendency of polymer aerogels by kinds of monomer or ratio. Flexibility and microstructure can be changed by the types of monomer. EHA polymer aerogel shows high flexibility and thin microstructure, and EHMA polymer aerogel shows high hardness and thick microstructure. EHA/EHMA polymer aerogel shows the intermediate nature between them. By utilizing the mechanical properties of three types of polymer aerogels to adequate situation or environment, polymer aerogels could be used as drug agent, ion exchange resin, oil filter and insulator, and so on.

Characteristics of MEMS Probe Tip with Multi-Rhodium Layer (이중 로듐 층을 갖는 멤스 프로브 팁의 특성)

  • Park, Dong-Gun;Park, Yong-Joon;Lim, Seul-Ki;Kim, Il;Shin, Sang-Hun;Cho, Hyun-Chul;Park, Seung-Pil;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Probe tip, which should have not only superior electrical characteristics but also good abrasion resistance for numerous contacts with semiconductor pads to confirm their availability, is essential for MEMS probe card. To obtain good durability of probe tip, it needs thick and crack-free rhodium layer on the tip. However, when the rhodium thickness deposited by electroplating increased, unwanted cracks by high internal stress led to serious problem of MEMS probe tip. This article reported the method of thick Rh deposition with Au buffer layer on the probe tip to overcome the problem of high internal stress and studied mechanical and electrical properties of that. MEMS probe tip with double-Rh layer had good contact resistance and durability during long term touch downs.

Studies on the Deformation in the Hysteresis Loop of $Pb(Zr,Ti)O_3$ Ferroelectric Thin Films ($Pb(Zr,Ti)O_3$ 강유전체 박막 이력곡선의 변형에 관한 연구)

  • Lee, Eun-Gu;Lee, Jong-Guk;Lee, Jae-Gap;Kim, Seon-Jae
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.360-363
    • /
    • 2000
  • Deformation in the hysteresis loop of $Pb(Zr,Ti)O_3$ (PZT) thin films with various Zr/Ti ratios has been studied by varying the top electrode preparation method and the annealing temperature. Pt/PZT/Pt capacitors was found to be positively poled due to dc plasma potential generated during reactive ion etch (RIE) of Rt. Internal field is formed by space charges trapped at domain boundaries. Aging phenomenon such as constriction in the middle of the hysteresis loop was observed in the PZT film with top electrode deposited by sputtering. Top electrode annealing restores the hysteresis loop by removing the space charges. As Zr/Ti ratio decrease, voltage shift increases and an-nealing temperature at which internal field disappears also increases.

  • PDF

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins (실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향)

  • Kwak, Geun-Ho;Park, Soo-Jin;Park, Jun-Ha;Kim, Kong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.701-706
    • /
    • 1999
  • The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss($T_{max}$), integral procedural decomposition temperature(IPDT), and decomposition activation energy($E_t$) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(${\alpha}_r$) and the flexural modulus($E_r$) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both ${\alpha}_r$ and $E_r$.

  • PDF