• Title/Summary/Keyword: internal force variation

Search Result 56, Processing Time 0.024 seconds

The Dependence of Substrate on Ag Photodoping into Amorphous GeSe Thin Films using Holographic Method (비정질 GeSe 박막으로의 은-광도핑에 대한 기판의존성)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.852-858
    • /
    • 2007
  • The dependence of substrate on the Ag photodoping phenomenon into amonhous $({\alpha}-)$ GeSe thin film has been investigated using holographic method. A 442 nm HeCd laser was utilized as a light source for the holographic exposure and a 632.8 nm HeNe laser to measure the variation of diffraction efficiency $(\eta)$ in real time. The films (Ag and ${\alpha}-GeSe$) were thermally deposited on the substrates, i.e. p-type Si(100), n-type Si(100) and slide glass. The sample structures prepared were two types: type I (Ag/${\alpha}$-SeGe/substrate) and type II (${\alpha}$-SeGe/Ag/substrate). The $\eta$ kinetics comprised to be three steps in which $\eta$ initially increases, is saturated to be maximized $(\eta_M)$, and then decreases relatively gradually. For the same substrate, the $\eta_M$ values of the type II were higher than those of type I. In addition, the type II exhibited the highest $\eta_M$ for p-type Si substrate, while that in type I was observed for n-type Si substrate. These tendency is explained by the diffusion of minority carrier in the films and the change of magnitude and direction in internal fields generated at the film interfaces. Atomic-force-microscope (AFM) was used to observe relief-type grating patterns.

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.

Investigation of the Change of Soil Arch Structure in Model Particle Assembly Subjected to Displacing Trapdoor via Photoelastic Measurement Technique (트랩도어 하강이 일어나는 모형 입자 입상체에서 광탄성 측정 기법을 이용한 흙 아치 구조의 변화 조사)

  • Shin, Sang-Young;Jung, Young-Hoon;Kim, Taesik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.31-40
    • /
    • 2016
  • In order to investigate the change in soil arch structure developed within the soil subjected to trapdoor movement, various responses in the deformed particle assembly were observed via photoelastic measurement technique. The particle assembly was composed of the regularly stacked model particles coated by thin photoelastic material. Variation of the internal structure transmitting contact forces were observed by taking images showing the photoelastic responses and compared with the change in slip lines and pressures measured by load cells placed beneath the assembly. Initial soil arch structure established immediately after the trapdoor movement collapsed progressively and meanwhile a new extended structure was developed against further movement of the trapdoor. For the sufficient movement of the trapdoor, initially identical regions bounded by the soil arch structure and slip lines were separated and the region enclosed by slip lines became a part of the region loosing the transmitting contact forces identified by photoelastic measurement.

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.