• Title/Summary/Keyword: internal diffraction gratings

Search Result 4, Processing Time 0.016 seconds

Fabrication of Internal Gratings in PDMS Using a Femtosecond Laser

  • Park, Jung-Kyu;Cho, Sung-Hak;Yu, Jae-Yong;Kim, Jae-Gu;Sugioka, Koji;Hong, Jong-Wook;Heo, Won-Ha;Hwang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Photo-induced gratings m flexible PDMS (polydimethly siloxane) film are directly written by a high-intensity femtosecond (130fs) Ti: Sapphire laser (${\lambda}_p$ = 800nm). The refractive index modifications with $4\;{\mu}m$ diameters were photo-induced after the femtosecond irradiation with peak intensities of more than $1{\times}10^{11}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which femtosecond laser by controlling both laser power and focused depth. The change on refractive index in the laser-modified regions was estimated to be approximately $10^{-3}$. The internal flexible symmetric diffraction gratings in PDMS film was successfully fabricated using a femtosecond laser.

  • PDF

Internal modification in transparent materials using plasma formation induced by a femtosecond laser

  • Park, Jung-Kyu;Yoon, Ji-Wook;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The fabrication of internal diffraction gratings with photoinduced refractive index modification in transparent materials was demonstrated using low-density plasma formation excited by a femtosecond (130 fs) Ti: sapphire laser (${\lambda}_p$=800 nm). The refractive index modifications with diameters ranging from $1{\mu}m$ to $3{\mu}m$ were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than $2.0{\times}10^{13}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.

  • PDF

A Study on the Development of Chalcogenide-based ReRAM{Resistance RAM) Device with Holographic Lithography Method (Holographic Lithography 방법을 적용한 Chalcogenide-based ReRAM(Resistance RAM) 소자의 개발에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1014-1017
    • /
    • 2009
  • In this study, we studied the nature of thin films formed by holographic photodoping chalcogenide thin films with for use in programmable metallization cell devices(PMC), a type of ReRAM. We formatted straight conduction pathway from the internal interferences of the diffraction gratings which is builded by the holographic lithography method. We investigated the resistance change of solid-electrolyte chalcogenide thin films varied in the applied voltage bias direction from about $1\;M{\Omega}$ to several hundreds of $\Omega$. The switching characteristics of the devices applied holographic lithography method was more improved than ultraviolet exposure condition. As a result of improved resistance change effects, we can analogize that the diffraction gratings is a kind of pattern for straight conduction pathway formation inside the chalcogenide thin films.

Surface Relief Hologram Mask Recording Simulation and Optimization Based on SDTA in the Fresnel Diffraction Zone (Fresnel 영역에서의 SDTA 방법을 이용한 전산묘사에 의한 Surface Relief Hologram Mask 기록 조건 최적화)

  • Lee, Sung-Jin;Dominguez-Caballero, Jose;Barbastathis, George
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.793-798
    • /
    • 2009
  • In this paper, the simulation and optimization of SRH (Surface Relief Hologram) masks for printing LCD gate patterns using TIR (Total Internal Reflection) holographic lithography was investigated. A simulation and optimization algorithm based on SDTA (Scalar Diffraction Theory Analysis) method was developed. The accuracy of the algorithm was compared to that of the RCWA (Rigorous Coupled Wave Analysis) method for estimating the Fresnel diffraction pattern of Cr amplitude masks for the given system geometry. In addition, the results from the optimization algorithm were validated experimentally. It was found that one to the most important conditions for the fabrication of SRH masks is to avoid nonlinear shape distortions of the resulting grating. These distortions can be avoided by designing SRH masks with recorded gratings having small aspect ratios of width versus depth. The optimum gap size between the Cr and SRH masks was found using the optimization algorithm. A printed LCD gate pattern with a minimum line width of $1.5{\mu}m$ exposed using the optimized SRH mask was experimentally demonstrated.