• Title/Summary/Keyword: internal corrosion

Search Result 264, Processing Time 0.028 seconds

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline (토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Kim, Woosik;Kim, Cheolman;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

A Study on the behaviour of Cavitation erosion and lubricating Oils and the influence of Corrosion on Slide Bearing Metals for Internal combustion Engine (내연기관용 슬라이드 베어링재의 케비테이션 침식거동과 부식영향 및 윤할유의 거동에 관한 연구)

  • Lee, Jin-Yeol;Im, U-Jo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.171-183
    • /
    • 1992
  • In this paper, the behaviour of cavitation erosion, influence of corrosion and corrosion control on slide bearing metals for internal combustion engine were investigated, and this experiment was done by the vibratory cavitation erosion tester. The main results obtained are as follows: 1. With decreasing the space between horn and specimen, the weight loss and its rate increased step by step. But the weight loss and its rate of 0.2mm space decreased conversely more than that of 0.4mm space at early stage. 2. The weight loss and its rate with change of pH were appeared to the order of pH2>pH12>pH7>pH4. And the weight loss and its rate at pH 4 decreased at best. 3. The weight loss and its rate by cavitation erosion for bearing metals were shown to the order of W.M7>W.M1>K.M4. 4. There appeared mainly small pit hole at pH2, and appeared the pit of netting thread type at pH12 by the results of the damaged surfaces at pH2 and pH12 environments that were sensitive to cavitation erosion. 5. With increasing the viscosity of lubricating oil, the weight loss rate by cavitation erosion became dull at the space below 0.5mm. 6. The protective efficiency of cavitation erosion-corrosion is superior inhibitor of chormate(25 ppm) to cathodic protection.

  • PDF

A Study on the Corrosion Behavior of Fe-Ni-Cr Alloys in Molten Salts of LiCl and LiCl-${Li_2}O$ (LiCl 및 LiCl-${Li_2}O$ 용융염에서 Fe-Ni-Cr 합금의 부식거동 연구)

  • Jo, Su-Haeng;Jang, Jun-Seon;Hong, Sun-Seon;Sin, Yeong-Jun;Park, Hyeon-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.471-477
    • /
    • 2000
  • Corrosion behavior of Fe-Ni-Cr alloy in molten salts of LiCl and LiCl-$Li_2O was investigated in the tempera-ture range of $650~850^{\circ}C$. In the molten salt of LiCl, and internal oxidation of Fe occurred in the KSA(Kaeri Superalloy)-1 alloy without containing Cr, while a dense protective oxide scale of $LiCrO_2$ was formed in the KSA-4, Incoloy 800H and KSA-5 alloys. In the mixed molten salt of LiCl-$Li_2O$, internal oxidation of Fe and Cr took place in the KSA-1 and KSA-4 alloys, respectively. Non-protective porous oxide scales consisting of $LiCrO_2$ and Ni were formed in the Incoloy 800H and KSA-5. The corrosion rate of the alloys increased with the increase in Cr content and the corrosion rate followed the parabolic law for the alloy containing Cr content less than 8%, and the linear law for the alloy containing Cr content more than 8%. Such a corrosion behavior of the alloy in the mixed molten salt of LiCl-$Li_2O$ was interpreted in terms of the basic fluxing mechanism of protective oxide scale of $Cr_2O_3$.

  • PDF

A Study on Corrosion Measurement Techniques and Evaluation for Structure of EMU (도시철도차량 구조물에 대한 부식측정기법 적용 및 평가방안 연구)

  • Chung, Jong-Duk;Pyun, Jang-Sik;Hong, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.931-938
    • /
    • 2011
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. Under frame side sill in rolling stocks is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications and evaluation of NDI technology in EMU.

  • PDF

HVOF Thermal Sprayed AISI316-WC Coating Layer on Stainless Steel for PEMFC Bipolar Plate (고분자 전해질 연료전지용 분리판으로서 스테인리스강에 HVOF 용사된 AISI316-WC 코팅층)

  • Nam, Dae-Geun
    • New & Renewable Energy
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • Stainless steels have been widely considered as metallic bipolar plates, due to their passive surface film, which is good for corrosion resistance. However, the high resistivity of the passive film increases interfacial contact resistance between the bipolar plates and the electrodes. Stainless steels thermal spray coated with a mixture of tungsten carbide and stainless steel powders showed that the coated layer safely combined with the matrix but they suffered many internal defects including voids and cracks. Many cracks were formed in the coated layer and the interface of the matrix and the coated layer during the rolling process. The coated and rolled stainless steels showed lower interfacial contact resistance and corrosion resistance than bare stainless steel because of low resistivity of tungsten carbide and numerous defects, which caused crevice corrosion, in the coated layer.

  • PDF

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

Engineering Estimation of Limit Load Solution for Wall-Thinned Pipes Considering Material Properties (재료물성을 고려한 감육배관의 공학적 한계하중해 제시)

  • Choi, Jae-Boong;Kim, Jin-Su;Goo, Bon-Geol;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.351-356
    • /
    • 2001
  • A potential loss of structural integrity due to aging of nuclear piping may have a significant effect on the safety of nuclear power plants. In particular, failures due to the erosion and corrosion defects are a major concern. As a result, there is a need to assess the remaining strength of pipe with erosion/corrosion defects. In this paper, a limit load solution for the eroded and corroded SA106 Grade B pipes subjected by internal pressure is developed. based in 3-D finite element analyses, considering a wide range of the shape of pipeline, flaw depth and axial flaw length parametrically.

  • PDF

Effect of Boundary Conditions on Failure Probability of Buried Steel Pile (매설된 강 파일의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.204-213
    • /
    • 2003
  • A survey for finding corrosion examples was performed on the underground steel piles buried for 19 years in the area of iron and steel making factory near Young-il bay. A failure probability model, which can be used to check the reliability of the corrosive mechanical element, based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as temperature change, soil-friction, internal pressure, earthquake, loading of soil, traffic loads and corrosion on failure probability of the buried steel piles are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.