• 제목/요약/키워드: intermittent reactor

검색결과 49건 처리시간 0.025초

2단 간헐 포기조의 포기/비포기 시간비에 따른 영양염류 제거특성 (Nutrients removal on Oxic/Anoxic time ratio in 2-stage-intermittent-aeration reactor)

  • 김홍태;신석우;오상화;권성현
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.675-680
    • /
    • 2004
  • This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously. From the experiment, two major results were as follows. First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal. Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).

컴퓨터 시뮬레이션을 이용한 간헐폭기 MBR시스템에서의 유기물 및 영양염류 처리 성능 평가 (Evaluation of Biological Organic and Nutrient Removal Performance in Intermittent MBR Systems by Computer Simulation)

  • 유호식;이승희
    • 유기물자원화
    • /
    • 제21권3호
    • /
    • pp.82-92
    • /
    • 2013
  • 생물학적 질소 및 인을 제거하기 위한 경제적인 공법인 간헐 폭기 MBR공법은 내부순환이 없고, 간헐반응조 폭기 시간 조절을 통해서 반응시간을 조절할 수 있는 장점이 있다. 본 연구에서는 신기술로 인증 받은 폭기에너지 절약 공법인 신 간헐폭기-MBR공법, 그리고 간헐반응조 폭기/비포기 주기가 1시간/1시간 및 4시간/4시간인 일반적인 간헐 폭기 MBR공법에 있어서의 처리성을 컴퓨터시뮬레이션을 통해서 평가하였다. 폭기 주기가 1시간/1시간인 간헐폭기 MBR공법의 경우, 폭기 시 최대 용존산소 농도가 0.23mg/L가 되어, 동시 질산화/탈질 반응이 수행되는 것으로 나타나 질소와 인 제거 효율은 각각 57.0%, 55.0%로 가장 높았다. 본 연구는 유입수질이 일정한 경우에 있어서의 시뮬레이션을 수행하였으며, 각 시스템에 있어서의 실 처리장 적용성을 파악하기 위해서는 유입수질 변동에 따른 처리성을 평가할 필요가 있는 것으로 나타났다.

Bioaugmentation이 간헐폭기 오수처리장치의 운전효율에 미치는 영향 (Effect of Bioaugmentation on Performance of Intermittently Aerated Sewage Treatment Plant)

  • 정병곤
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.233-239
    • /
    • 2008
  • In order to improve reactor performance of existing sewage treatment plants, the feasibility of enhancing reactor performance by bioaugmentation using EM as bioaugmentation agent and the effects of anoxic: oxic time ratio on reactor performance were investigated. Continuous and intermittent aeration modes were compared under the 6 hr of HRT. Three different types of intermittent aeration modes, that is, 15 min, of anoxic:45 min of oxic, 30 min of anoxic: 30 min of oxic, and 45 min of anoxic: 15 min oxic respectively were chosen as test modes to study the effects of anoxic : oxic time ratios on reactor performance. The optimum anoxic: oxic time ratio was 30 min:30 min when considering simultaneous removal of organic, nitrogen and phosphorus. When applying EM into a continuously aerated reactor under the varying dosing rates of 50-200 ppm, reactor performance in terms of organic and nitrogen removal efficiencies was not improved at all. Nitrogen removal efficiency was increase when the EM dosing rate was increased. However the degree of improvement was slight when the EM was injected above 100 ppm. However optimum phosphorus removal was found at the EM dosing of 200 ppm. Thus it was found that optimum injection concentration of EM is 200 ppm. It is apparent that putting EM into a sewage treatment plant significantly affects the T-N removal efficiency of the reactor by enhancing denitrification efficiency especially in operational conditions of relatively long anoxic periods. To achieve reciprocal condition in a reactor with intermittent aeration it is necessary to enhance the reactor performance by EM injection. In the case of modifying existing continuously aerated reactors into intermittent aerated reactors, it is obvious that operating costs of aeration would be reduced by reducing aeration time when compared with existing conventional sewage treatment plants.

멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가 (Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process)

  • 서인석;김연권;김지연;김홍석;김병군;최창규;안효원
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

간헐적인 유출수 반송이 UASB 반응조 운전효율에 미치는 영향 (Effects of intermittent effluent recycling on the performance of UASB process)

  • 이헌모;양병수
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.317-324
    • /
    • 1993
  • Effluent recycling effect on UASB reactor performances is known as an important operational factor. In the present study, the possibility of intermittent recycle in UASB process for saving the power consumption was examined at different organic loading and various operational modes in recycle time period. The organic removal efficiencies of the reactors operated with the intermittent effluent recycle were considerably higher compared to those without the effluent recycle. In the intermittent recycle mode, the organic removal efficiencies slightly decreased as the non-recycle time period in the operational mode increased. Proper ratio of recycle and non-recycle time period in the mode seemed to be required to prevent the produced biogas from accumulation in the sludge bed, which caused dead zone in the reactor and sludge loss when the gas was escaped from the bed at the certain pressure.

  • PDF

컴퓨터 시뮬레이션을 이용한 간헐폭기 MBR공정에서의 운전온도 변화에 따른 질소제거 성능 평가 (The Evaluation of Temperature Effect on Nitrogen RemovaI at Intermittent MBR System by Computer Simulation)

  • 이병희;박민정
    • 멤브레인
    • /
    • 제22권6호
    • /
    • pp.489-501
    • /
    • 2012
  • 두 개의 간헐반응조, 막분리조, 탈기조로 구성된 생물학적 MBR고도처리 공정에 동일한 유입수량과 수질의 하수가 유입되는 경우 운전 온도 및 SRT (Sludge Retention Time)변화에 따른 질소제거 특성을 컴퓨터 시뮬레이션을 통해 파악하였다. SRT가 25일이고 운전온도가 $25^{\circ}C$인 경우 간헐반응조를 간헐폭기 시키는 경우에 운전온도 $13^{\circ}C$의 59%에서 31%로 질소제거효율이 급격히 떨어지는데, 이는 운전온도 $13^{\circ}C$에 비해서 간헐반응조의 RBO (Readily Biodegradable Organic) 농도가 낮아져서 발생한 현상으로 파악되었다. 운전온도 $25^{\circ}C$에서 SRT를 12.6일로 운전하는 경우 간헐반응조 RBO농도는 증가하고 질소제거 효율은 회복되었다. 간헐반응조를 갖는 MBR시스템에서 SRT와 운전온도가 간헐반응조 RBO농도에 미치는 영향은 좀더 깊게 연구되어야 한다.

실규모 연속유입간헐폭기 공정(ICEAS)에서 최적운전조건이 경제성에 미치는 영향 (Economic implications of optimal operating conditions in a full-scale continuous intermittent cycle extended aeration system (ICEAS))

  • 정용재;최윤성;이승환
    • 상하수도학회지
    • /
    • 제38권1호
    • /
    • pp.29-38
    • /
    • 2024
  • Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.

간헐포기소화의 비용 평가 (Cost Estimation of Intermittent Aerobic Digestion)

  • 김운중;김성홍;김희준
    • 대한토목학회논문집
    • /
    • 제26권1B호
    • /
    • pp.113-118
    • /
    • 2006
  • 간헐포기방식의 슬러지 소화 기술에 대한 비용을 분석하였다. 포기비율은 간헐포기소화의 가장 중요한 설계인자이며, 포기 비율에 따라 시설비와 동력비가 달라진다. 목표 SS 제거율을 35%로 설정하고, 철근콘크리트형식의 SBR 간헐포기소화조를 설계하였으며, 이로부터 시설비와 동력비를 산출하였다. 비용 평가는 할인율과 경제성장율을 고려하는 현재가치로 환산하는 방법을 사용하였다. 포기비율이 낮은 경우는 시설비가 높지만 동력비는 적게 소요되며, 포기비율이 높으면 반대로 시설비는 낮지만 동력비는 증가한다. 초기시설비는 호기성 소화가 간헐포기소화보다 더 저렴하다. 그러나, 총비용면에서 내용연수 약 10년 이상의 운전에서는 간헐포기소화가 호기성 소화보다 더 유리하다. 특히, 내용연수가 길수록 최적 포기비율은 낮아지며, 내용연수가 45년 정도일 때 최적포기비율은 0.3 정도이고, 이 경우 총비용은 호기성소화의 64% 수준이다.

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.