• Title/Summary/Keyword: intermetallic

Search Result 783, Processing Time 0.034 seconds

The Effect of Carbide Precipitation on the High Temperature Deformation of Ni3Al and TiAl

  • Han, Chang-Suk;Kim, Jang-Woo;Kim, Young-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2009
  • The effect of carbon addition on the microstructures and mechanical properties of $Ni_3Al$ and TiAl intermetallic alloys have been characterized. It is shown that carbon is not only an efficient solid solution strengthener in $Ni_3Al$ and TiAl, it is also an efficient precipitation strengthener by fine dispersion of carbide. Transmission electron microscope investigation has been performed on the particle-dislocation interactions in $Ni_3Al$ and TiAl intermetallics containing various types of fine precipitates. In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide, which has the cube-cube orientation relationship with the matrix, appear during aging. Typical Orowan loops are formed in $Ni_3Al$ containing fine dispersions of $M_{23}C_6$ particles. In the L10-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction (SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ is and $[1120]_{Ti2AlC}//[101]_{L10\;matrix}$. High temperature strength of TiAl increases appreciably by the precipitation of fine carbide. Dislocations bypass the carbide needles at further higher temperatures.

Effect of De-graphitization Heat Treatment on Interfacial Bonding Properties of Flake Graphite Cast Iron-Aluminum Dissimilar Materials Produced by High Pressure Die Casting (고압 다이캐스팅법으로 제조한 편상흑연주철 -알루미늄 이종소재의 계면접합특성에 미치는 탈흑연 열처리의 영향)

  • Yang, Ji-Ba-Reum;Kim, TaeHyeong;Jeong, JaeHeon;Kim, SangWoo;Kim, YoonJun;Kim, DongEung;Shin, JeSik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.535-542
    • /
    • 2021
  • In this study, to improve the interfacial bond strength of cast iron-aluminum dissimilar materials, graphite was removed to a certain depth from the cast iron surface through de-graphitization heat treatment. As the heat treatment time increased, the depth at which graphite was removed increased, showing a linear relationship between the heat treatment time and depth. Aluminum was filled to a certain depth on the de-graphitized cast iron surface through die-casting method, and no intermetallic compounds were formed on the cast iron-aluminum interface. The interfacial bonding strength showed a value of 90 MPa regardless of the heat treatment time, which is very high compared to the 12MPa bonding strength of the material without de-graphitization heat treatment. This result is thought to be due to the mechanical bonding of the undercut structure as the liquid aluminum, penetrated by the high pressure die-casting process, solidified in the de-graphitized region of the cast iron.

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet (알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향)

  • Yoonje Sung;Donggyu Kim;Jungi Seo;Kyunghyun Han;Beomki Hong;Kangmin Kim;Seounguk Heo;Seonghyun Park;Jae-Taek Im;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Study on Sn-Ag-Fe Transient Liquid Phase Bonding for Application to Electric Vehicles Power Modules (전기자동차용 파워모듈 적용을 위한 Sn-Ag-Fe TLP (Transient Liquid Phase) 접합에 관한 연구)

  • Byungwoo Kim;Hyeri Go;Gyeongyeong Cheon;Yong-Ho Ko;Yoonchul Sohn
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.61-68
    • /
    • 2023
  • In this study, Sn-3.5Ag-15.0Fe composite solder was manufactured and applied to TLP bonding to change the entire joint into a Sn-Fe IMC(intermetallic compound), thereby applying it as a high-temperature solder. The FeSn2 IMC formed during the bonding process has a high melting point of 513℃, so it can be stably applied to power modules for power semiconductors where the temperature rises up to 280℃ during use. As a result of applying ENIG surface treatment to both the chip and substrate, a multi-layer IMC structure of Ni3Sn4/FeSn2/Ni3Sn4 was formed at the joint. During the shear test, the fracture path showed that cracks developed at the Ni3Sn4/FeSn2 interface and then propagated into FeSn2. After 2hours of the TLP joining process, a shear strength of over 30 MPa was obtained, and in particular, there was no decrease in strength at all even in a shear test at 200℃. The results of this study can be expected to lead to materials and processes that can be applied to power modules for electric vehicles, which are being actively researched recently.

Effect of Mg Addition on the Microstructure and Mechanical Properties of Al-Li-Ce Alloys (Al-Li-Ce계 합금의 미세조직 및 기계적 특성에 미치는 Mg 첨가의 영향)

  • Byeong-Kwon Lee;Eun-Chan Ko;Yong-Ho Kim;Hyo-Sang Yoo;Hyeon-Taek Son;Sung-Kil Hong
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.393-399
    • /
    • 2023
  • In this study, changes in the microstructure and mechanical properties of cast and extruded Al-2Li-1Ce alloy materials were investigated as the Mg content was varied. The density decreased to 2.485, 2.46 and 2.435 g/cm3 when the Mg content in the Al-2Li-1Ce alloy was increased to 2, 4 and 6 wt%, respectively. Intermetallic compounds of Al11Ce3 were observed in all alloys, while the β-phase of Al3Mg2 was observed in alloys containing 6 wt% of Mg. In the extruded material, with increasing Mg content the average grain size decreased to 84.8, 71.6 and 36.2 ㎛, and the fraction of high-angle grain boundaries (greater than 15°) increased to 82.8 %, 88.6 %, and 91.8 %, respectively. This occurred because the increased Mg content promotes dynamic recrystallization during hot extrusion. Tensile test results showed that as the Mg content increased, both the yield strength and tensile strength increased. The yield strength reached 86.1, 107.3, and 186.4 MPa, and the tensile strength reached 215.2, 285, and 360.5 MPa, respectively. However, it is worth noting that the ductility decreased to 27.78 %, 25.65 %, and 20.72 % as the Mg content increased. This reduction in ductility is attributed to the strengthening effect resulting from the increased amount of dissolved Mg, and grain refinement due to dynamic recrystallization.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Mechanical Alloying and the Consolidation Behavior of Nanocrystalline $Ll_2$ A$1_3$Hf Intermetallic Compounds (Cu 첨가에 따른 nanocrystalline ${Ll_2}{Al_3}Hf$ 금속간 화합물의 기계적 합금화 거동 및 진공열간 압축성형거동)

  • Kim, Jae-Il;O, Yeong-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.629-635
    • /
    • 2001
  • To improve the ductility of $A1_3Hf$ intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior. the effect of Cu addition on the $Ll_2$ phase formation and the behavior of vacuum hot-pressed consolidation were investigated. During the mechanical alloying by SPEX mill, the $Ll_2 A1_3Hf$ intermetallics with the grain size of 7~8nm was formed after 6 hours of milling in Al-25at.%Hf system. The $Ll_2$ Phase of Al_3Hf$ intermetallics with the addition of 12.5at.%Cu, similar to that of the binary Al-25at.% Hf, was formed, but the milling time necessary for the formationof the $Ll_2$ phase was delayed form 6 hours to 10 hours. The lattice parameter of ternary $Ll_2(Al+Cu)_3Hf$ intermetallics decreased with the increase of Cu content. The onset temperature of $Ll_2$ to $D0_{23}$ phase in $Al_3Hf$ intermetallics was around 38$0^{\circ}C$, the temperature upon completion varied from 48$0^{\circ}C$ to 5$50^{\circ}C$ as the annealing time. The onset temperature of $Ll_2$ to $D0_{23}$ phase transformation in $(Al+ Cu)_3Hf$ intermetallics increased with the amount of Cu and the highest onset temperature of $700^{\circ}C$ was achieved by the Cu addition of 10at.%. The relative density increased from 89% to 90% with the Cu addition of 10at.% in $Al_3Hf$ intermetallics hot-pressed in vacuum under 750MPa at 40$0^{\circ}C$ for 3 hours. The relative density of 92.5% was achieved without the phase transformation and the grain growth as the consolidation temperature increased from 40$0^{\circ}C$ to 50$0^{\circ}C$ in $(Al+Cu)_3Hf$ intermetallics hot-pressed in vacuum under 750MPa for 3 hours.

  • PDF

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature (브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성)

  • Kee, Se-Ho;Park, Sang-Yoon;Heo, Young-Ku;Jung, Jae-Pil;Kim, Won-Joong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.169-175
    • /
    • 2012
  • Purpose: In this study, brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature were investigated. Materials and methods: The sample size of the $ZrO_2$ was $3mm{\times}3mm{\times}3mm$ (thickness), and Ti-6Al-4V was $10mm(diameter){\times}5mm(thickness)$. The filler metal consisted of Ag-Cu-Sn-Ti was prepared in powder form. The brazing sample was heated in a vacuum furnace under $5{\times}10^{-6}$ torr atmosphere, while the brazing temperature was changed from 700 to $800^{\circ}C$ for 30 min. Results: The experimental results shows that brazed joint of $ZrO_2$ and Ti-6Al-4V occurred at $700-800^{\circ}C$. Brazed joint consisted of Ag-rich matrix and Cu-rich phase. A Cu-Ti intermetallic compounds and a Ti-Sn-Cu-Ag alloy were produced along the Ti-6Al-4V bonded interface. Thickness of the reacted layer along the Ti-6Al-4V bonded interface was increased with brazing temperature. Defect ratios of $ZrO_2$ and Ti-6Al-4V bonded interfaces decreased with brazing temperature. Conclusion: Thickness and defect ratio of brazed joints were decreased with increasing temperature. Zirconia was not wetting with filler metal, because the reaction between $ZrO_2$ and Ti did not occur enough.

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF