• Title/Summary/Keyword: intermediate coupling layer

Search Result 9, Processing Time 0.047 seconds

Analysis of side-polished fiber couplers with an intermediate-coupling layer and improvement of their coupling efficiency (중간 결합층이 적층된 측면연마 광섬유 결합기의 해석 및 결합효율 개선)

  • 손경락;김광택
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • An in-line fiber coupler, based on side-polished single-mode fibers covered with an intermediate coupling layer and a planar waveguide, is analyzed by modeling the interaction region as an equivalent multi-layered planar waveguide. The reflectance for the multi-layered structure with and without buffer layer is illustrated as a function of the refractive index and thickness of the overlay waveguides. When the refractive index of the overlay waveguides is greater than that of the fiber core, the conditions for the intermediate coupling layer to increase the power coupling from the fiber to the overlays is also explained. Through the experimental results using a LiNbO$_3$planar waveguide, we show that the theoretical analysis is reasonable and in good agreement with the measured values.

Wavelength-division multiplexing channel isolation filter using a side-polished fiber coupler (측면 연마 광섬유 결합기를 이용한 파장분할 다중화 채널분리 필터)

  • 손경락;김광택;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.461-466
    • /
    • 2002
  • Fiber-optic comb filters using a side-polished fiber coupler are proposed as multi-channel isolation filters on wavelength division multiplexing systems. We have demonstrated that the coupling efficiency between two waveguides is improved by the intermediate coupling layer in spite of the decrease of the optical power transfer between two waveguides due to the high-order modes of the overlay waveguide coupled with the side-polished single-mode fiber. When LiNbO$_3$with a 200-${\mu}{\textrm}{m}$-thickness was applied as a planar-overlay-waveguide, the comb filtering characteristics with a 4 nm-channel-spacing were achieved and the maximum power coupling occurred at the 1-${\mu}{\textrm}{m}$-thickness and the refractive index in range 1.52 to 1.53 of an intermediate coupling layer. If the intermediate coupling layer is optimized, an extinction ratio with more than 20 dB can be obtained. These experimental results are in good agreement with the BPM simulation.

Polarization Splitter Made of the Side-Polished Fiber Coupler Including a thin Metal Intermediate Layer (얇은 중간 금속층을 포함한 측면 연마 광섬유 결합기를 이용한 편광 분리기)

  • 김광택;이준옥
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.651-657
    • /
    • 2003
  • We have demonstrated an in-line polarization splitter based on a side-polished fiber coupler including a thin metal intermediate layer. The experimental results revealed that the metal layer with proper thickness prevents TE polarization component from optical coupling between two contacted side-polished fibers, whereas it allows TM polarization component to the coupling. The design and fabrication techniques about the polarization splitter exploiting the side-polished fibers have been presented. The fabricated polarization splitter exhibited 18dB and 23dB of isolation ratio for TE polarization and TM polarization, respectively. The measured insertion loss for TE and TM polarization was 0.7dB and 1.3dB, respectively.

Fiber-to-planar waveguide coupler with a thin metal intermediate layer (얇은 금속 중간층이 포함된 광섬유-평면도파로 결합기)

  • 김광택;윤대성;손경락
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.355-358
    • /
    • 2003
  • We report experimental results on the wavelength and polarization selective coupling properties of fiber-to-planar waveguide coupler having a thin metal intermediate layer. The influence of the metal layer thickness and the refractive index of the superstrate on the device properties has been measured and explained. The proposed device exhibited various application possibilities including polarizers, modulators, and sensors.

Interfacial Layer and Thermal Characteristics in Ni-Zn-Cu Ferrite and Pb(Fe1/2Nb1/2)O3 for the Low Temperature Co-sintering (저온 동시소결을 위한 Ni-Zn-Cu 폐라이트와 Pb(Fe1/2Nb1/2)O3에서의 열적 거동 및 계면층 특성)

  • Song, Jeong-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.873-877
    • /
    • 2007
  • In order to apply a complex multilayer chip LC filter, this study has estimated the interfacial reaction and coupling properties of dielectric materials $Pb(Fe_{1/2}Nb_{1/2})O_3$ and Ni-Zn-Cu ferrite materials through low-temperature co-sintering (LTCS). PFN powders were fabricated using double calcinated at $700^{\circ}C$ and then $850^{\circ}C$. While the perovskite phase rate was found to be 91 %, after heat treatment at $900^{\circ}C$ for 6h, the perovskite phase rate and density exhibited a value of 100 % and 7.46$g/cm^3$, respectively. The PFN/Ni-Zn-Cu ferrite, PFN/CUO (or $Pb_2Fe_2O_5$) and ferrite/CuO (or $Pb_2Fe_2O_5$) were mechanically coupled through interfacial reactions after the specimen was co-sintered at $900^{\circ}C$ for 6 h. No intermediate layer exists for the mutual coupling reaction. This result indicates the possibility of low-temperature co-sintering without any interfacial reaction layer for a multilayer chip LC filter.

Lattice Deformation and Electronic Structure of the $C_{60}{^+}$ Cation

  • 이기학;이한명;전희자;박성수;이왕로;Park, T. Y.;Xin Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.452-457
    • /
    • 1996
  • The effects caused by the ionization on the electronic structure and geometry on C60 are studied by the modified Su-Schriffer-Heeger (SSH) model Hamiltonian. After the ionization of C60, the bond structure of the singly charged C60 cation is deformed from Ih symmetry of the neutral C60 to D5d, C1, and C2, which is dependent upon the change of the electron-phonon coupling strength. The electronic structure of the C60+ cation ground state undergoes Jahn-Teller distortion in the weak electron-phonon coupling region, while self-localized states occur in the intermediate electron-phonon region, but delocalized electronic states appear again in the strong electron-phonon region. In the realistic strength of the electron-phonon coupling in C60, the bond structure of C60+ shows the layer structure of the bond distortion and a polaron-like state is formed.

Magnetic Properties of Two-layered Ferromagnetic Films with a Conetic Intermediately Super-soft Magnetic Layer of Different Thickness

  • Choi, Jong-Gu;Sim, Jung-Taek;Kwak, Tae-Jun;Son, Il-Ho;Hwang, Do-Guwn;Rhee, Jang-Rho;Lee, Sang-Suk
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.148-150
    • /
    • 2010
  • Two-layered ferromagnetic alloy films ($Ni_{80}Fe_{20}$, $Co_{90}Fe_{10}$) with a Conetic intermediate soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of the hard saturation field. The interpretation of strong, medium and weak coupling is proposed.

  • PDF

Overall Conversion Efficiency for Dimethylsulfide to Sulfur Dioxide in the Marine Boundary Layer-An Overview

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.107-120
    • /
    • 2002
  • Dimethyl sulfide (DMS) is the major sulfur gas released from the ocean. The atmospheric DMS released from the ocean is oxidized mainly by hydroxyl (OH) radical during the day and nitrate (NO$_3$) radical at night to form sulfur dioxide (SO$_2$) as well as other stable products. The oxidation mechanism of DMS via OH has been known to proceed by two channels; abstraction and addition channels. The major intermediate product of the addition channel has been known to be dimethylsulfoxide (DMSO) based on laboratory chamber studies and field experiments. However, a branching ratio for DMSO formation is still uncertain. The reaction of DMSO with OH ultimately produces SO$_2$and dimethylsulfone. The major product of the abstraction channel has known to be SO$_2$from laboratory chamber studies. But overall conversion efficiency for DMS to SO$_2$from DMS oxidation is still inconsistent in the literature. Based on laboratory and field studies, the conversion efficiency from the abstraction channel is likely to be greater than 0.5, while that from the addition channel is likely to be greater than 0.6. Overall conversion efficiency from DMS to SO$_2$might be greater than 0.5 based on the above two values in the remote marine boundary layer (MBL). This high efficiency in the remote MBL is supported by strong coupling between DMS and SO$_2$measurements with high temporal resolution.

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.