• Title/Summary/Keyword: interlayer short-circuits

Search Result 2, Processing Time 0.015 seconds

Analysis of the Damage Patterns and Metal Structure of 3 Phase Mold Transformers to which Interlayer Short-circuits have Occurred (층간 단락된 3상 몰드변압기의 소손 패턴 및 금속 조직 해석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • The purpose of this study is to analyze the damage patterns and metal structure of 3 phase mold transformers collected from places where accidents have occurred. Compared to an oil-immersed transformer, a mold transformer has the advantage of requiring a smaller installation area and can be kept clean, while its disadvantages include the fact that abnormal symptoms of an accident are difficult to discover and its repair is impossible. The capacity of the mold transformers collected from places where accidents have occurred was 200kVA with primary voltages being F23,900V, R22,900V, 21,900V, 20,900V, 19,900V, etc., as well as secondary voltages being 380V, 220V, etc. It was found from the analysis on the diffusion of combustion in the damaged mold transformers that fire occurred first inside the U-phase primary winding and that carbonization and heat were diffused to V-phase and W-phase in V-pattern. In addition, from the analysis on the cross-sectional structure of the metal of the melted high voltage winding using a metallurgical microscope, it was found that the boundary surface, voids, and columnar structure were formed when an interlayer short-circuit had occurred Therefore, even though it is not possible to find the cause for the occurrence of an interlayer short-circuit at the inner side of the primary winding, it is thought that, due to the thermal energy generated when the short-circuit occurred, the heat source was diffused to the upper side and outside, causing a secondary accident.

Characteristics of Hillock Formation in the Al-1%Si Film by the Effect of Ion Implantation and Substrate Temperature (이온 주입과 기판 온도 효과에 의한 Al-1%Si 박막의 Hillock 형성 특성)

  • Choi, Chang-Auk;Lee, Yong-Bong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • As packing density in integrated circuits increases, multilevel metallization process has been widely used. But hillock formed in the bottom layers of aluminum are well known to make interlayer short in multilevel metallization. In this study, the effects of ion implantation to the metal film and deposition temperature on the hillock formation were investigated. The Al-1%Si thin film of $1{\mu}m$ thickness was DC sputtered with substrate ($SiO_2/Si$) temperature of $20^{\circ}C$, $200^{\circ}C$, and $400^{\circ}C$, respectively. Ar ions ($1{\times}10^{15}cm^{-2}$: 150 keV) and B ions ($1{\times}10^{15}cm^{-2}$, 30 keV, 150 keV) were implanted to the Al-Si thin film. The deposited films were evaluated by SEM, surface profiler and resistance measuring system. As a results, Ar implanting to Al-Si film is very effective to reduce hillock size in the metal deposition temperature below than $200^{\circ}C$, and B implanting to an Al-Si film is effective to reduce hillock density in the high temperature deposition conditions around $400^{\circ}C$. Line width less than $3{\mu}m$ was free of hillock after alloying.