• Title/Summary/Keyword: interior permanent magnet motor

Search Result 449, Processing Time 0.034 seconds

Characteristic Analysis of the Linear Switched Reluctance Motor with Interior Permanent Magnet according to Magnetization of Permanent Magnet (영구자석 삽입형 직선형 스위치드 릴럭턴스 전동기의 전자기 특성 해석)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Park, Ji-Hoon;Lee, Un-Ho;Goo, Cheol-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.806_807
    • /
    • 2009
  • This paper deals with characteristic analysis on the Linear Switched Reluctance Motor with Interior Permanent Magnet (LSRM-IPM) according to the magnetization of permanent magnet. The governing equations and force equations are derived using analytical method for the suggested models. This paper compares the force characteristics in terms of three cases considering the position and size of permanent magnet.

  • PDF

Reducing Cogging Torque in Interior Permanent Magnet type BLDC motor by Flux barriers in the rotor (회전자부의 자속장벽 설치를 통한 IPM type BLDC 전동기 코깅 토오크 저감에 대한 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.64-66
    • /
    • 2004
  • Several techniques have been adopted in motor design of interior permanent magnet (IPM) type brushless DC (BLDC) motor to minimize cogging torque. IPM type motor has better ability in the centralization of flux than surface-mounted permanent magnet (SPM) type BLDC motor. So, the structure of IPM type BLDC motor has high saliency ratios that produce additional torque. However, this structure has a significant cogging torque that generates both vibration and noise. This paper describes new technique of the flux barriers design for reduction of cogging torque of IPM type BLDC motor. To reduce the cogging torque, flux barriers are applied in the rotor. Changing the number of barrier, the cogging torque is analyzed by finite clement method(FEM).

  • PDF

Characteristic Analysis of IPMSM for Electric Vehicle Propulsion With Variable Operating Condition Based on Numerical Analysis (운전조건을 고려한 전기자동차 구동용 IPMSM의 수치해석 기반의 제 특성 해석)

  • Im, Chae-Young;Jung, Sang-Yong;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1502-1509
    • /
    • 2011
  • This Paper presents characteristic analysis in terms of interior permanent magnet synchronous motor for electric vehicle propulsion using numerical analysis. Torque ripple analysis, thermal analysis, demagnetization analysis of permanent magnet and mechanical stress analysis with variable operating condition are presented. According to these characteristic analysis, both the performance of motor and possible problems during the operation are examined thoroughly in advance.

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor according to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • Lee K. J.;Kim K. C.;Lee J. I.;Kwon J. L.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.758-760
    • /
    • 2004
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

  • PDF

Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape (IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감)

  • Yang, Byoung-Yull;Yun, Keun-Young;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

Flux-Weakening control algorithm for an IPMSM drive reflecting the Characteristic Current Variations (특성 전류의 변화를 반영한 매입형 영구자석 동기전동기의 약계자 제어 알고리즘 개발)

  • JungHyeon Han;Jae Suk Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.426-431
    • /
    • 2024
  • This paper presents a flux-weakening control algorithm for Permanent Magnet Synchronous Motor (PMSM) drives that reflects the magnitude of the characteristic current. A stator flux linkage observer is utilized to calculate the varying ratio of permanent magnet(PM) flux linkage. The characteristic current magnitude is indirectly calculated using the ratio of the calculated PM flux linkage. The calculated PM flux linkage is used to determine the application of Maximum Torque Per Voltage (MTPV) control for the IPMSM(Interior Permanent Magnet Synchronous Motor) through a 3D Look-Up Table(LUT). The proposed flux-weakening control method is validated through simulations.

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Inductance Analysis of Interior Permanent Magnet Synchronous Motor Considering Cross-Coupling Effect (교차 결합 현상을 고려한 매입형 영구자석 전동기의 인덕턴스 특성 해석)

  • Kwak, Sang-Yeop;Kim, Jae-Kwang;Jung, Hyun-Kyo;Lee, Sang-Yub
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • In this paper, the inductance characteristics of interior permanent magnet synchronous motor (IPMSM) considering cross-coupling effect is analyzed. It is known that the IPMSM has it's operating point at the saturated region. So the cross-coupling effect exists, therefore cross-coupling inductance exists. With the application of Fixed Permeability Method (FPM), we can obtain more exact inductance characteristics of IPMSM. In this paper, a novel method based on the FPM is proposed, which can consider the cross-coupling effect. And the cross-coupling inductance which is the analysis result is shown. Finally, the validity of proposed method is verified by the comparison with the experimental result.

Sensorless speed Control of Interior Permanent Magnet Synchronous Motor based on Instantaneous Reactive Power in the Field-Weakening Region (약계자 영역에서의 순시 무효전력을 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Won-Seok;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.923-924
    • /
    • 2006
  • For the interior permanent magnet synchronous motor(IPMSM) drive to operate above the base speed in the constant horsepower region, field weakening control is applied. However, the field weakening control was not almost applied to sensorless control of the interior permanent magnet synchronous motor. In this parer, field weakening control is applied to the sensorless control of IPMSM based on an instantaneos reactive power. The effectiveness of the Proposed system is verified by the experimental results.

  • PDF

A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석)

  • Kim, Seung-Joo;Kim, Cherl-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).