• 제목/요약/키워드: interior permanent magnet

검색결과 497건 처리시간 0.034초

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

매입형 영구자석 동기전동기의 돌극성을 고려한 인덕턴스 산정 및 토크특성 해석 (Analysis of inductances and torque characteristics considering saliency in IPMSM)

  • 강규홍;이주민;홍정표;김규탁;박정우;김종무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.167-169
    • /
    • 1999
  • This paper presents the d-q axis inductances calculations method of Interior Permanent Magnet Synchronous Motor(IPMSM) by using Finite Element(FE) analysis. The inductances of d-q axis in IPMSM, which is the function of current magnitude and phase angle are computed by energy dual method. The appropriateness of the proposed FE analysis has been verified by comparing with experimental results.

  • PDF

전자기 및 구조 유한요소법을 이용한 브러시레스 전동기의 응력 해석 (Stress Analysis of Brushless Motor by Using Structural and Electromagnetic Finite Element Method)

  • 하경호;강경호;홍정표;장기찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.617-619
    • /
    • 2000
  • This paper deals with the mechanical stress analysis caused by the electromagnetic radial force and the design considering the stress. The link in an Interior Permanent Magnet Brushless Motor(IPM) have influence on the mechanical and magnetic performance. Therefore, it is necessary to determine the appropriate link thickness. The optimal geometry link is designed by using the coupled with structural and electromagnetic Finite Element Method.

  • PDF

Flux Position Estimation Method of IPMSM by Controlling Current Derivative at Zero Voltage Vector

  • Hosogaya, Yuji;Kubota, Hisao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.84-90
    • /
    • 2012
  • Various methods have been proposed to identify the flux position in an interior permanent magnet synchronous motor (IPMSM) without the use of mechanical sensors. To achieve this, a method that uses both the back electromotive force (EMF) and the saliency to identify the flux position in the IPMSM without the injection of high-frequency components at low speeds has been reported. This method was then extended in order to drive the motor with no load to a light load. We propose a combination of these methods with different proportional-integral (PI) controllers for controlling $di_{dest}$/dt and $di_{qest}$/dt. We also introduce compensation values $F_L$ and $F_H$ to reduce the position error when the estimation rule is being selected.

Basic Study of IPMSM with High-Temperature Superconducting Wire Rod

  • Okada, Kazuya;Morimoto, Shigeo;Sanada, Masayuki;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.148-153
    • /
    • 2013
  • It is important to improve the efficiencies of motors to overcome problems such as decreasing energy reserves and environmental pollution. Superconductors are promising for developing high-efficiency motors. However, superconducting wires must be kept in critical conditions and the AC loss needs to be minimized. In this paper, a design of a superconducting interior permanent magnet synchronous motor (IPMSM) is proposed that reduces the AC loss. The characteristics of superconducting and normal-conducting IPMSMs are compared. The proposed superconducting IPMSM has a low AC loss and a very high efficiency at low speeds.

IPMSM 구동의 에너지 절감을 위한 효율 최적화 제어 (Efficiency Optimization Control for Energy Saving of IPMSM Drive)

  • 정동화;이정철;이홍균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.697-703
    • /
    • 2002
  • Interior permanent magnet synchronous motor(IPMSM) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석 (Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults)

  • 김경태;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

철심 재질에 따른 철손 계수 산정 및 IPMSM의 철손 계산 (Estimation Iron Loss Coefficients and Iron Loss Calculation of IPMSM According to Core Material)

  • 강보한;김용태;조규원;이정규;장기봉;김규탁
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1269-1274
    • /
    • 2012
  • In this paper, the iron loss was calculated using estimated iron loss coefficient at 650W Interior Permanent Magnet Synchronous Motor(IPMSM) and 250W IPMSM. The iron loss coefficients was estimated different according to electrical steel material used to stator and rotor core in motor. Aspect of The rotating flux field and alternating flux field was confirmed by magnetic field behavior and harmonic analysis in stator core, the iron loss was calculated using flux density by Finite Element Method(FEM) and estimated coefficients by iron loss coefficient estimation proposed in this paper. The iron loss experiment was performed for verified to iron loss calculation, and the iron loss coefficients were verified by comparison of iron loss calculation value and experimental value.

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

IPMSM 드라이브의 약계자 운전을 위한 최대토크 제어 (Maximum Torque Control for Field Weakening Operation of IPMSM Drive)

  • 남수명;최정식;고재섭;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.321-326
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM for high speed drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i{_d}$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for high speed drive, the operating characteristics controlled by maximum torque control are examined in detail by experiment.

  • PDF