• Title/Summary/Keyword: interior column

Search Result 199, Processing Time 0.025 seconds

A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column (철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구)

  • Mun, Sang-Hun;An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

A Computational Platform for Nonlinear Analysis of Deep Beam-and-Interior Column Joints (깊은보-내부기둥 접합부의 비선형해석을 위한 전산플랫폼)

  • Kim, Tae-Hoon;Ko, Dong-Woo;Lee, Han-Seon;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.201-210
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of deep beam-and-interior column joints. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Horizontal cyclic load tests were conducted to estimate the strength, ductility, and behavioral characteristics of deep beam-and-interior column joints. Experimental parameters are axial forces and amount of transverse reinforcement. The proposed numerical method for the seismic performance assessment of deep beam-and-interior column joints is verified by comparison of its results with reliable experimental results.

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint (내부 보-기둥 접합부의 전단파괴)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Structural Performance Evaluation of Slab-Beam-Column Subassemblage in R/C Ordinary Moment Frame Building (철근콘크리트 보통모멘트 골조의 슬래브-보-기둥 부재의 구조성능 평가)

  • 유혁상;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.757-762
    • /
    • 2000
  • The purpose of this study is to investigate the performance of slab-beam-column subassemblage in the Ordinary Moment Frame(OMF). For this purpose, 3-story building was designed according to UBC and ACI building code(ACI 318-99) and the subassemblages of in the first story were constructed. The subassemblages were classified into interior and exterior. Each interior and exterior subassemblage is modeled by the 2/3 scale experimental specimens. All the specimens have the transverse beam and the columns on the slab have the lap splice as the typical exterior and interior slab-beam-column subassemblage. The interior subassemblage was tested under the constant axial force, while the exterior subassemblage was tested under the fluctuating axial force. Based on the results of the experiments, the performance of each subassemblage is evaluated and the failure mode is investigated.

  • PDF

A Study on the Framework and Arrangement of Interior Column in Single-Story Buddhist Halls (단층 불전 내주의 결구 및 배열 방식에 관한 연구)

  • Lee, U-Jong;Jeon, Bong-Hui
    • Korean Journal of Heritage: History & Science
    • /
    • v.33
    • /
    • pp.210-255
    • /
    • 2000
  • This study aims to classify the framework and arrangement of interior columns (Naeju) which are used in single-story Buddhist halls into several types, and to develop a theory on the process of changes among those types. Since interior columns are building materials which hold up the roof structure and make partitions in the interior space of halls, their framework and arrangement is closely linked to the development of building technology and is expected to reflect new architectural needs. The kinds of interior columns classified by the shape of framework are goju, chaduju, oepyonju, naepyonju. The arrangement of interior columns can he classified by two methods: One which counts the number of the interior column arrangements in a hall, and the other whose classification relates with the side wall columns - Jeongchibup and yijubup. With the combination of these classifications, we can divide the framework and arrangement of interior columns into 8 types From the remains of Korean and Chinese Architecture, we can presume that before the late-Goryo period, jeongchibup had always been applied in the construction of Buddhist halls, and gamju(column reducing) had only been used in examples of small scale. After the founding of Choseon Kingdom, however, national policy had weakened the economic power of Buddhist temples. Because of that, large-scale outdoor Buddhist mass was replaced by small-scale indoor mass, and for this reason, though the scale of Buddhist halls became smaller, the need for a broad interior space became stronger. Thus in early-Choseon period, reduction of interior columns became widely spread. Those types of framework and arrangement of interior columns where yijubup was applied were developed because the rear interior columns arrangements, in order to expand the interior space, have moved backward. Among these types, yiju-goju and yiju-chaduju were developed for the Buddhist halls with paljak roof(hipped-gabled roof), where the load of their side eaves caused structural problems at the side walls. And oepyonju type was for the small-scale and middle-scale Buddhist halls which needed more interior space but didn't want the extension of roof structure. From the local and periodic distribution of each types, we can conclude that the types jeongchi-goju, jeongchi-chaduju and yiju-chaduju have been settled as typical technique of local carpenters. Oepyonju was developed later than the other types, but for its merit of low cost, it became a popular type across the nation.

Strength Prediction of Interior Beam-column Joint using 3D Strut-Tie Model (3차원 스트럿-타이 모델을 이용한 내측 보-기둥 접합부의 강도 예측)

  • Yun, Young-Mook;Kim, Byung-Hun;Lee, Won-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.405-408
    • /
    • 2004
  • The current design procedures of ACI 318-02, CE3-FIP and NZS 3101 for interior beam-column joints do not provide engineers with a clear understanding of the physical behavior of beam-column joints. In this paper, the failure strengths of the interior beam-column joint specimens tested to failure were evaluated using the 3-dimensional strut-tie model approach, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie model approach were compared with those obtained from the other approaches, and the validity of the approach implementing a 3-dimensional strut-tie model was examined.

  • PDF

Key factors affecting the shear behaviour of exterior RC beam-column joints

  • Ricardo, Costa;Paulo, Providencia
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.353-367
    • /
    • 2023
  • An extended parametric study based on nonlinear finite element analyses is performed to assess the key factors affecting the shear behaviour of exterior beam-column joints of unbraced reinforced concrete frames. Extensive results are presented, the major conclusion being that the few shear behaviour models for exterior reinforced concrete beam-column joints available in the literature do not properly account for some of the most influential factors. The present results are also compared with recently published results for interior joints, showing that while some factors have a similar influence on interior and exterior joints others are relevant for only one of these types of joints. This also confirms, numerically, that some resisting mechanisms of exterior joints differ from those of interior joints.

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF