• Title/Summary/Keyword: interglacial period

Search Result 45, Processing Time 0.02 seconds

Characteristic Nature of the Unconformity between Holocene and Late Pleistocene in the Tidal Deposits along the Western Coast of Korea

  • Park, Yong-Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.13-14
    • /
    • 2003
  • It is generally well known that Quaternary is characteristic geologically in terms of glacial and interglacial repeats and their associated unconformity formation. This paper deals with the first finding of the characteristic and significant meaningful unconformity between Holocene and late Pleistocene, which implies submergence and emergence of the tidal sedimentary basin along the western coastal zone of Korea during interglacial stage(IOS-5e) and glacial time(IOS-2). The stratigraphy of intertidal deposits in the Haenam Bay, western coast of Korea shows two depositional sequence units (Unit I of Holocene and Unit II of late Pleistocene) bounded by an erosional surface of disconformity. The disconformity is related to the latest Pleistocene sea-level lowstands (probably during the LGM). The Unit II is interpreted as intertidal deposit showing tidal sedimentary structures and crab burrow ichnology and has two parts (the upper part and the lower part) showing different lithology and character. The upper part of Unit II shows characteristic subaerial exposure features (emergence) and its related lithology. Such subaerially exposed upper part (more or less 4m to 5m in thickness) is characterized by yellow-brownish sediment color, cryoturbat-ed structure, crab burrow ichnofacies and high value of shear strength. Geochemical and clay mineral analyses of the upper part sediments also indicate subaerial exposure and weathering. In particular, very high value of magnetic susceptibility of the upper part in comparison to that of the lower part is interpreted as pedogenetic weathering during the subaerial exposure period.

  • PDF

Fluvial Terraces of the Lower Yeongsan River, Southwestern Coastal Region of Korean Peninsula (영산강 하류 지역의 하안단구)

  • Choi, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.41-46
    • /
    • 2004
  • The fluvia(thalassostatic) terraces have been developed among the lower Yeongsan river, near the southwestern coastal region of Korean peninsula. These thalassostatic terraces could be classified into 3 surface, i. e., Yeongsan 32m, 18m, and 10m surface, in desending order, according to the relative heights from the river floor. Yeongsan 32m, 18m and 10m surfaces were corresponded to the mMT3, mLT1 and mLT2 surfaces of Choi(2003), respectively. It was revealed that the mLT1 surface was the marine terraces which had been formed in the Last Interglacial culmination period(oxygen isotope stage 5e) in the southeastern coast of Korean peninsula.

  • PDF

Late Quaternary Paleoenvironmental Changes in the Western Nakdong River delta (낙동강 삼각주 서부지역의 제4기 후기 고환경 변화)

  • Ryu, Choon-Kil;Kang, Sora;Chung, Sung-Gyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.443-458
    • /
    • 2005
  • Late Quaternary deposits of the core in the western area of the Nakdong River delta consist of four sedimentary units: Unit I, II, III and IV, in ascending order, controlled by the sea-level change since the last interglacial period. Unit I unconformable overlying Cretaceous basement rocks is composed of sandy gravel and sand deposited in a fluvial channel before the first marine transgression. Unit II composed of stiff massive mud is interpreted as a shallow marine deposits formed during the last interglacial period (probably MIS 5). The development of the fissures coated with oxidized materials in the upper part of Unit II is a feature of subaerial exposure, which indicates erosional contact with the upper Unit III. Unit III is made up of soft massive mud and soft shelly massive mud deposited in a tidal flat and a inner shelf, respectively, since the Holocene transgression (about 9,000 yr BP). Unit Ⅳ consisted of soft shell bedded mud and yellowish sandy mud was deposited in the delta environments during the regression (after about 5,000 yr BP). The lower shell bedded mud was deposited in a tidal flat and the upper sandy mud was deposited in the floodplain corresponding to present site of the Nakdong River delta.

The comparison and chronology of the lower marine terraces in the mid-eastern coast of Korean peninsula (韓反島 中部東海岸 低位海成段丘의 對比와 編年)

  • ;Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.103-119
    • /
    • 1995
  • This Paper aims to compare the lower marine terraces distributed from Muckho to Gangneung in the mid-eastern coast of Korean peninsula by the geomorphic method of using characteristies of terrace features and terrace deposits, paleosol, and fossil cryogenic structures, and to estimate the age of the lower marine terraces on the basis of the comparisons of those with the characteristics of thalassostatic terrace in adjacent rivers. The 1ower marine terraces in this area can be classified into two levels, i.e., lower marine terrace I and II surfaces, in desending order, according to the difference of former shoreline altitude. The former shoreline heights of the lowerm marine terrace I and II surfaces are 18m and 10m, respectiveiy. The width of the I surface is broader and distributed more continuousiy than that of II surface. Daejin I surface in Muckho coast, and Myeongju and Anin terrace in Gangneung coast could be classified into the lower marine terrace I surface, and Daejin II surfaCe into II surface. The Surface of ancient shore platform of the lower marine terrace I and II surfaces were weathered, and the color of the terrace deposit ranges from red to reddish brown. And this terrace deposit is covered with slope deposit of Last Glacial or fossil periglacial structures (platy structure and vecicle) of Last Glacial are formed in terrace deposit. These facts indicate that the lower marine terrace I and II surfaces had been formed before the Last Glacial, and then affected by chemical weathering under warm environment, finally followed by cold period. But the deposit of the lower marine terrace I surface is more weathered than that of II surface. And pseudogleyed red soil, which is developed in I but not in II surface, could be judged to have been formed in the Last Interglacial culmination stage (Oxygen isotope stage 5e). Therefore, in terms of the degree of weathering of the terrace deposit and the existence of pseudogleyed red soil, the age of both terrace is thought to be a little different. And the characteristics of the above mentioned II surface are accord with those of thalassostatic terrace formed in middle or late period of the Last Interglacial (5e or 5a). Thus on the basis of above all points, the lower marine terrace I and II surfaces in this area could be seen to have formed in the Last Interglacial culmination stage and middle or late period of the Last Interglacial, respectively. Because the lower mamine terrace I surface is broadry distributed in the eastern coast of Korea nPeninsula, the surface could be used to be a key surface in studying Quaternary marine terraces.

  • PDF

Biogenic Opal Production and Paleoclimate Change in the Wilkes Land Continental Rise (East Antarctica) during the Mid-to-late Miocene (IODP Exp 318 Site U1359) (동남극 윌크스랜드 대륙대의 마이오세 중-후기 동안 생물기원 오팔 생산과 고기후 변화(IODP Exp 318 Site U1359))

  • Song, Buhan;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • A 450 m-long sediment section was recovered from Hole U1359D located at the eastern levee of the Jussieau submarine channel on the Wilkes Land continental rise (East Antarctica) during IODP Expedition 318. The age model for Hole U1359D was established by paleomagnetic stratigraphy and biostratigraphy, and the ages of core-top and core-bottom were estimated to be about 5 Ma and 13 Ma, respectively. Biogenic opal content during this period varied between 3% and 60%. In the Southern Ocean, high biogenic opal content generally represents warm climate characterized by the increased light availability due to the decrease of sea-ice distribution. The surface water productivity change in terms of biogenic opal content at about 10.2 Ma in the Wilkes Land continental rise was related to the development of Northern Component Water. After about 10.2 Ma, more production of Northern Component Water in the North Atlantic caused to increase heat transport to the Southern Ocean, resulting in the enhanced diatom production. Miocene isotope events (Mi4~Mi7), which are intermittent cooling intervals during the Miocene, appeared to be correlated to the low biogenic opal contents, but further refinement was required for precise correlation. Biogenic opal content decreased abruptly during 6 Ma to 5.5 Ma, which most likely corresponds to the Messinian salinity crisis. Short-term variation of biogenic opal content was related to the extent of sea-ice distribution associated with the location of Antarctic Polar Front that was controlled by glacial-interglacial paleoclimate change, although more precise dating and correlation will be necessary. Diatom production in the Wilkes Land continental rise increased during the interglacial periods because of the reduced sea-ice distribution and the southward movement of Antarctic Polar Front.

The Origin of Coastal Dunesand in the Chungcheongnam-do (해안사구의 물질 구설과 플라이스토세층 - 충청남도의 해안을 중심으로 -)

  • 강대균
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.505-517
    • /
    • 2003
  • The purpose of this paper is to examine the origin of materials of sanddune in the Chungcheongnamdo. The sands consist mainly of quartz with lesser amount of feldspar and other heavy minerals. With the exception of those from the granite, the sands have a very fine texture. Another characteristic of the sand grains is the low degrees of roundness and grading which indicates that the source areas of the material are not far from the accumulating field. The rivers and streams of this region are not effective in transporting sediments for the coastal dunes. It has been recognized that the beaches and sanddunes have recently been receded as a result of the decrease in materials and the devastating actions of the breakers. The degradation process occurs most actively when the spring tides attack the beaches and foredunes. There are strata with red tint along the coastal areas of the Chungcheongnamdo which trace their origin back to the Pleistocene. From the fact that they contain little or no gravels, the strata are believed to have been the sanddunes during the last interglacial period. This fossil dunes provide part of the materials for the development of the present-day sanddunes along the coastal areas of the region.

The Elevation of Paleo-shoreline and Formation Age of the 1st Marine Terrace in Dadaepo, Busan, South Korea (부산 다대포 지역 해안 단구 제1면의 구정선 고도와 형성 시기)

  • Shin, Jae-Ryul;Hong, Yeong-Min;Hong, Seong-Chan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.67-79
    • /
    • 2019
  • This study documents the level of paleo-shoreline and the timing of formation of the lowest marine terrace (1st terrace) distributed in Dadaepo, Busan, South Korea. In the study area, the elevation of paleo-shoreline of the 1st terrace is clearly identified as 5 meters above mean high tide based on the elevation of wave-cut platforms and the elevation of boundary between marine and terrestial sediments. This is well consistent with the fact that are found along the Southern coast of the Korean Peninsula including Daepo-dong, Sacheon-si. The timing of formation of the 1st terrace in Dadaepo is confirmed to have been deposited around 70,000~80,000 years BP (MIS 5a) according to OSL and IRSL dating ages. However, because the formation age of the 1st terrace in Sacheon-si Daepo-dong (Southerm coast) and Pohang-si Umok-ri (Eastern coast) previously identified as about 90,000~100,000 years BP (MIS 5c), further discussion of what is needed. Possibly, it can be interpreted that the sub-interglacial (MIS 5a and 5c) sea-level records during the last interglacial period are likely to be selective on land depending on regions.

The Evidence for the High Sea Level of MIS 5e and the Paleo-coastal Sediments from Sinji-myen, Wando-gun, Jeollanam-do, Korea (전남 완도군 신지면 일대의 고해안퇴적층과 최종간빙기 고해수면 증거)

  • Shin, Won Jeong;Lee, Jae Ho;Byun, Jongmin;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2019
  • The physical and chemical characteristics of more than 5 m sandy deposits behind the beach in Sinji-do Island are investigated and its burial ages are estimated using Optically Stimulated Luminescence. By the estimated burial ages of the sandy deposits, this section is divided into four sub-units: Unit I (6.2 ka), Unit II (23.2 ka), Unit III (115.9 ka), and Unit IV (115.9 to 127.5 ka). It can be proposed that the Unit I of a coarse sand deposited during the Holocene Climatic Optimum. Unit II, supposed to be the aeolian sediments, formed during the Last Glacial Maximum (LGM). It can be supposed that the study area was not affected by the marine processes during the LGM, directly. Unit III is more consolidated deposits of coarse silt to fine sand and deposited during the Last Interglacial Period. Unit IV mainly consist of beach gravels with sandy matrix deposited during the Marine Isotope Stage 5e (MIS 5e), and thus indicates that the sea level of the southwest sea had risen 3 to 5 m above present sea level during the MIS 5e.

Late Pleistocene Variation in Intensity of Deep Western Boundary Current from Vertical Change in Size of Terrigenous Silt in the Rekohu Sediment Drift, SW Pacific (남서태평양 리코후 드리프트 퇴적층의 쇄설성 실트입자 크기의 수직적 변화를 이용한 플라이스토세 후기 심해서안경계해류의 세기 변화)

  • Kim, B.K.;Lee, Y.J.;Park, Y.H.;Bahk, J.J.
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 2006
  • Hole 1124 of ODP Leg 181 was located in the Rekohu sediment drift off eastern New Zealand in the southwest Pacific Ocean. Mean gain sizes of sortable silt were measured in two drilled cores (1124A and l124B). Chronostratigraphy of core 1124 was correlated with the well-dated nearby core S931, resulting that the age of core 1124 covers the late Pleistocene spanning about MIS (Marine Isotope Stage) 5. Mean grain size of sortable silt seemed to be relatively large during the glacial period, whereas that of the interglacial period was smaller, although several tephra layers contain some coarse-grained pyroclatic particles. The variation in mean grain size of sortable silt in Rekohu sediment drift during the late Pleistocene indicates that the intensity of Deep Western Boundary Current (DWBC) might have been enhanced during the glacial period as a result of increased production of Antarctic Bottom Water (AABW).

The Properties of Pusan Clay : Soil and Mineralogy of Clay Sediments in Noksan Area, Nakdong River Estuary (부산점토의 특성 : 녹산지역 점토 퇴적물의 광물조성과 토질)

  • 이선갑;김성욱;황진연;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.741-746
    • /
    • 2003
  • The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.

  • PDF