• 제목/요약/키워드: interferon-${\beta}$

검색결과 183건 처리시간 0.029초

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

사람 선유아세포 인터페론(Hu IFN-$\beta$)에 대한 단 Clone성 항체생산세포의 조작과 그 성질에 관한 연구 (Preparation and Characterization of Cell Hybrids Producing a Monoclonal Antibody to Human Fibroblast Interferon (Hu IFN-$\beta$))

  • 김현수;현형환;최경희;문홍모;유무영
    • 한국미생물·생명공학회지
    • /
    • 제14권3호
    • /
    • pp.219-223
    • /
    • 1986
  • 사람 선유아세포 인터페론의 정제에 사용되는 단 clone성 항체생산 세포주를 조작하기 위하여 BA-LB/C mouse의 복강과 꼬리정맥을 통하여 HuIFN-$\beta$를 면역화시키고 그 비장세포(spleen cells) 와 NS-O 세포주를 세포융합 시켰다. 융합된 1300 hybrids를 ELISA방법으로 선별하고 soft agarose 방법과 limiting dilution방법으로 subcloning하여 높은 항체를 생성하는 것으로 판명된 11 hybrids를 재선별 하였다. 재선별된 11 hybrids 각각의 항체형 (Ig type)을 조사하고 최종 Protein A-sepharose와 친화성이 높은 IgG 2a/형의 clone # 4-1-19와 clone # 551-4-1을 선별하여 배양된 세포를 각각 nude(nu/nu) mouse 및 BALB/c mouse 복강에 접종배양 하였다. 이들 mouse복강액으로 부터 얻은 ascites fluid를 protein A-sepharose를 이용한 affinity column분획으로 항체를 정제하였으며 ascites fluid $m{\ell}$당 약 4mg의 정제된 항체를 얻을 수 있었고 SDS-polyacrylamide gel상에서 전기영동 시킨 결과 분자량 14-16만 dalton으로 추정되는 항체를 확인할 수 있었다.

  • PDF

소아 재발/완화형 다발성 경화증 환자에서 인터페론 베타 1b 치료 1례 (A case of childhood relapsing/remitting multiple sclerosis and interferon β-1b treatment in a Korean patient)

  • 김현석;이원덕;이준화;조경래
    • Clinical and Experimental Pediatrics
    • /
    • 제50권6호
    • /
    • pp.580-584
    • /
    • 2007
  • 다발성 경화증은 중추신경계 백질의 여러 부위를 시간 간격을 두고 침범하는 만성재발성 질환이다. 주로 20세에서 40세 사이에 발병하며 15세 이하 소아에서도 3-5% 정도 발병하는 소아기에는 매우 드문 질환이다. 원인은 아직 정확히 밝혀지지 않았으나 유전적, 환경적 및 감염과 연관된 자가면역반응 등 여러요인이 복합적으로 작용하는 것으로 생각하고 있다. 임상증상은 침범된 백질 부위에 따라 다양한데 사지근력 약화나 저림, 시력장애, 감각장애, 운동실조 등 다양한 증세로 호전과 재발을 반복한다. 본 저자들은 경련, 왼쪽 편마비 등의 증상으로 6세에 첫 발병 후 메틸프레드니솔론(methylprednisolon) 치료 후 증상 완전 회복 있었으나 6개월 후 경련, 두통, 왼쪽 안와주위 통증 등으로 다시 입원하는 등 4년간 추적 관찰 중 4차례 메틸프레드니솔론 치료 실시하였으나 다른 양상의 신경학적 증상으로 재발하여 Interferon-${\beta}$-1b($Betaferon^{(R)}$, SheringAG, Germany) 예방 치료를 실시한 다발성 경화증 환자 1례를 경험 하였기에 문헌 고찰과 함께 보고하는 바이다.

Inhibitory Effect of IFN-$\beta$, on the Antitumor Activity of Celecoxib in U87 Glioma Model

  • Kim, Eun-Kyoung;Chung, Dong-Sup;Shin, Hye-Jin;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권6호
    • /
    • pp.552-557
    • /
    • 2009
  • Objective : Interferon-$\beta$, (IFN-$\beta$) has been used in the treatment of cancers. Inhibition of the enzyme cyclooxygenase (COX) with celecoxib had a significantly suppressive effect on tumor growth, angiogenesis, and metastasis in a variety of tumors. The aim of this study was to elucidate the antiglioma effect of combined treatment with IFN-$\beta$ and celecoxib in U87 glioma model. Methods : The in vitro effects of IFN-$\beta$ (50-1,000 IU/mL) and celecoxib ($50-250\;{\mu}M$) alone or combination of both on the proliferation and apoptosis of U87 cells were tested using MTT assay, FACS analysis and DNA condensation. To determine the in vivo effect, nude mice bearing intracerebral U87 xenograft inoculation were treated with IFN-$\beta$ intraperitoneally ($2{\times}10^5\;IU/day$ for 15 days), celecoxib orally (5, 10 mg/kg) or their combination. Results : IFN-$\beta$ or celecoxib showed an inhibitory effect on the proliferation of U87 cells. When U87 cells were treated with IFN-$\beta$ and celecoxib combination, it seemed that IFN-$\beta$ interrupted the antiproliferative and apoptotic activity of celecoxib. No additive effect was observed on the survival of the tumor bearing mice by the combination of IFN-$\beta$ and celecoxib. Conclusion : These results suggest that IFN-$\beta$ seems to inhibit the antiglioma effect of celecoxib, therefore combination of IFN-$\beta$ and celecoxib may be undesirable in the treatment of glioma.

Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway

  • Kim, Yong;Kim, Han Gyung;Han, Sang Yun;Jeong, Deok;Yang, Woo Seok;Kim, Jung-Il;Kim, Ji Hye;Yi, Young-Su;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.547-554
    • /
    • 2017
  • Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon $(IFN)-{\beta}$ mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, $IFN-{\beta}$, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.

Induction of Apoptosis in Glioma Cells and Upregulation of Fas Expression Using the Human Interferon-β Gene

  • Guo, Yan;Wang, Gan;Gao, Wen-Wei;Cheng, Shi-Wen;Wang, Ren;Ju, Shi-Ming;Cao, He-Li;Tian, Heng-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2837-2840
    • /
    • 2012
  • We investigated whether IFN-${\beta}$ inhibits the growth of human malignant glioma and induces glioma cell apoptosis using the human IFN-${\beta}$ gene transfected into glioma cells. A eukaryonic expression vector ($pSV2IFN{\beta}$) for IFN-${\beta}$ was transfected into the glioma cell line SHG44 using liposome transfection. Stable transfection and IFN-${\beta}$ expression were confirmed using an enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was also assessed by Hoechst staining and electron microscopy. In vivo experiments were used to establish a SHG44 glioma model in nude mice. Liposomes containing the human IFN-${\beta}$ gene were injected into the SHG44 glioma of nude mice to observe glioma growth and calculate tumor size. Fas expression was evaluated using immunohistochemistry. The IFN-${\beta}$ gene was successfully transfected and expressed in the SHG44 glioma cells in vitro. A significant difference in the number of apoptotic cells was observed between transfected and non-transfected cells. Glioma growth in nude mice was inhibited in vivo, with significant induction of apoptosis. Fas expression was also elevated. The IFN-${\beta}$ gene induces apoptosis in glioma cells, possibly through upregulation of Fas. The IFN-${\beta}$ gene modulation in the Fas pathway and apoptosis in glioma cells may be important for the treatment of gliomas.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Differential Modulatory Effects of Cholera Toxin and Pertussis Toxin on Pain Behavior Induced by TNF-${\alpha}$, Interleukin-1${\beta}$ and Interferon-${\gamma}$ Injected Intrathecally

  • Kwon, Min-Soo;Shim, Eon-Jeong;Seo, Young-Jun;Choi, Seong-Soo;Lee, Jin-Young;Lee, Han-Kyu;Suh, Hong-Won
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.582-586
    • /
    • 2005
  • The present study was designed to characterize the possible roles of spinally located cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G-proteins in pro- inflammatory cy tokine induced pain behaviors. Intrathecal injection of tumor necrosis factor-a (TNF-${\alpha}$; 100 pg), interleukin-1${\beta}$ (IL-1${\beta}$ 100 pg) and interferon-${\gamma}$ (INF-${\gamma}$; 100 pg) showed pain behavior. Intrathecal pretreatment with CTX (0.05, 0.1 and 0.5 mg) attenuated pain behavior induced by TNF-${\alpha}$ and INF-${\gamma}$ administered intrathecally. But intrathecal pretreatment with CTX (0.05, 0.1 and 0.5${\mu}g$) did not attenuate pain behavior induced by IL-1${\beta}$. On the other hand, intrathecal pretreatment with PTX further increased the pain behavior induced by TNF-${\alpha}$ and IL-1${\beta}$ administered intrathecally, especially at the dose of 0.5 ${\mu}g$. But intrathecal pretreatment with PTX did not affect pain behavior induced by INF-${\gamma}$. Our results suggest that, at the spinal cord level, CTX- and PTX-sensitive G-proteins appear to play important roles in modulating pain behavior induced by pro-inflammatory cytokines administered spinally. Furthermore, TNF-${\alpha}$, IL-1${\beta}$ arid INF-${\gamma}$ administered spinally appear to produce pain behavior by different mechanisms.

오미소독음(五味消毒飮)의 항염효과(抗炎效果) 및 기전(機轉)에 관(關)한 실험적연구(實驗的硏究) (Anti-inflammatory Effects of Omisodokeum)

  • 서윤정;김송백;조한백;최창민;이순이
    • 대한한방부인과학회지
    • /
    • 제21권1호
    • /
    • pp.39-54
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the anti-inflammatory effects of the water extract of Omisodokeum (OMSDE) on peritoneal macrophages, Methods: To verify the anti-inflammatory mechanism of OMSDE, the activation of nuclear $factor-{\kappa}B$ $(NF-{\kappa}B)$ and the phosphorylation of MAPK were examined. Results: The extract of OMSDE suppressed the production of LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and IL-12 in the macrophages. OMSDE inhibited the degradation of inhibitory ${\kappa}B-{\alpha}$ $(I{\kappa}B-{\alpha})$ and it suppressed the activation of extracellular signal-regulated kinase (ERK 1/2) but didn't inhibit c-Jun N-terminal kinase (JNK) and p38, indicating that OMSDE may inhibit the pro-inflammatory cytokine production process by inhibiting the activation of $NF-{\kappa}B$ and ERK 1/2. Furthermore, OMSDE inhibited the production of interferon $(IFN)-{\beta}$ but didn't inhibit of $IFN-{\alpha}$ in the LPS-stimulated macrophages through the down-regulation of interferon regulatory factor (IRF)-1 and IRF-7. The Oral administration of OMSDE inhibited LPS-induced endotoxin shock and the production of $TNF-{\alpha}$ in serum but didn't inhibit of $IL-1{\beta}$ and IL-6. Conclusion: These results suggest that OMSDE may be effective in the prevention and treatment of inflammatory diseases.

  • PDF